Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Reshape Basic Understanding of Cell Division

09.11.2010
Potentially big implications for cancer control

By tracking the flow of information in a cell preparing to split, Johns Hopkins scientists have identified a protein mechanism that coordinates and regulates the dynamics of shape change necessary for division of a single cell into two daughter cells.

The protein, called 14-3-3, sits at an intersection where it integrates converging signals from within the cell and cues cell shape change and, ultimately, the splitting that allows for normal and abnormal cell growth, such as in tumors.

In a report published Nov. 9 in Current Biology, the Hopkins team links 14-3-3 directly to myosin II, a complex of motor proteins that monitors and smoothes out the shape changes to ensure accurate division.

“The discovery of this role for 14-3-3 has immediate and important medical implications because cell division already is one of the major targets of anticancer drugs,” says Douglas Robinson, Ph.D., an associate professor of cell biology at the Johns Hopkins School of Medicine. “This protein provides a new opportunity for tweaking the cell division system.”

The new findings grew out of studies of the so-called mitotic spindle in the one-celled amoeba Dictyostelium. The spindle’s job is to separate all the genetic material into two identical sets, one for each daughter cell, and coordinate cell division activities at the cell’s outer membrane.

Using a painstaking chemical-genetic approach, the scientists altered the cells so that they grew only half as well as normal. They then used tools of genetic engineering to try to make the cells grow normally again.

Specifically, they used a chemical that makes the spindles fall apart, and then they searched for genes “turned on” in response to this catastrophe. Out popped 14-3-3. When they increased production of 14-3-3, they found that the chemical lost its damaging effect.

Next, they blocked 14-3-3 and noticed traits in these cells reminiscent of what happens when myosin II muscle-moving machinery is disturbed, suggesting that 14-3-3 plays a critical role in cell shape dynamics and cell division.

The amoeba has only one form of the 14-3-3 protein compared to humans, whose seven forms interact with hundreds of proteins to regulate many cellular processes. Some 14-3-3s in humans are thought to be tumor suppressors because their function is lost in tumor cells; other 14-3-3s in humans are over-productive in certain types of cancers, suggesting that they may be biomarkers for disease progression.

Ironically, division failure may put a cell on the pathway of tumor development because it results in a cell having twice as many parts and chromosomes during the next cell cycle. Such chromosomal instability may put it at risk of losing genetic material such as tumor suppressors.

Tumor cells often have alterations in their mechanical properties, Robinson says, adding that those alterations are thought to contribute to how cells can metastasize, invade and pass through different cell layers to migrate to new locations in the body.

Says Robinson: “Having studied myosin II for 13 years, it still surprised us that 14-3-3 coordinates myosin II in the critical processes of cell shape change and division.”

The study was supported by the National Institutes of Health, National Science Foundation and American Cancer Society.

Johns Hopkins authors of the study, in addition to Robinson, are Qiongqiong Zhou, Yee-Seir Kee, Christopher C. Poirier, Christine Jelinek, Jonathan Osborne, Srikanth Divi, Alexandra Surcel, Pablo A. Iglesias, Marie E. Will and Robert J. Cotter.

Other authors are Ulrike S Eggert of Harvard Medical School and Annette
Müller-Taubenberger of the Ludwig-Maximillians-University, Munich.
On the Web:
Doug Robinson: http://www.hopkinsmedicine.org/cellbio/robinson/index.html
Current Biology: http://www.cell.com/current-biology/

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.cell.com/current-biology/
http://www.hopkinsmedicine.org/cellbio/robinson/index.html

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>