Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Reshape Basic Understanding of Cell Division

09.11.2010
Potentially big implications for cancer control

By tracking the flow of information in a cell preparing to split, Johns Hopkins scientists have identified a protein mechanism that coordinates and regulates the dynamics of shape change necessary for division of a single cell into two daughter cells.

The protein, called 14-3-3, sits at an intersection where it integrates converging signals from within the cell and cues cell shape change and, ultimately, the splitting that allows for normal and abnormal cell growth, such as in tumors.

In a report published Nov. 9 in Current Biology, the Hopkins team links 14-3-3 directly to myosin II, a complex of motor proteins that monitors and smoothes out the shape changes to ensure accurate division.

“The discovery of this role for 14-3-3 has immediate and important medical implications because cell division already is one of the major targets of anticancer drugs,” says Douglas Robinson, Ph.D., an associate professor of cell biology at the Johns Hopkins School of Medicine. “This protein provides a new opportunity for tweaking the cell division system.”

The new findings grew out of studies of the so-called mitotic spindle in the one-celled amoeba Dictyostelium. The spindle’s job is to separate all the genetic material into two identical sets, one for each daughter cell, and coordinate cell division activities at the cell’s outer membrane.

Using a painstaking chemical-genetic approach, the scientists altered the cells so that they grew only half as well as normal. They then used tools of genetic engineering to try to make the cells grow normally again.

Specifically, they used a chemical that makes the spindles fall apart, and then they searched for genes “turned on” in response to this catastrophe. Out popped 14-3-3. When they increased production of 14-3-3, they found that the chemical lost its damaging effect.

Next, they blocked 14-3-3 and noticed traits in these cells reminiscent of what happens when myosin II muscle-moving machinery is disturbed, suggesting that 14-3-3 plays a critical role in cell shape dynamics and cell division.

The amoeba has only one form of the 14-3-3 protein compared to humans, whose seven forms interact with hundreds of proteins to regulate many cellular processes. Some 14-3-3s in humans are thought to be tumor suppressors because their function is lost in tumor cells; other 14-3-3s in humans are over-productive in certain types of cancers, suggesting that they may be biomarkers for disease progression.

Ironically, division failure may put a cell on the pathway of tumor development because it results in a cell having twice as many parts and chromosomes during the next cell cycle. Such chromosomal instability may put it at risk of losing genetic material such as tumor suppressors.

Tumor cells often have alterations in their mechanical properties, Robinson says, adding that those alterations are thought to contribute to how cells can metastasize, invade and pass through different cell layers to migrate to new locations in the body.

Says Robinson: “Having studied myosin II for 13 years, it still surprised us that 14-3-3 coordinates myosin II in the critical processes of cell shape change and division.”

The study was supported by the National Institutes of Health, National Science Foundation and American Cancer Society.

Johns Hopkins authors of the study, in addition to Robinson, are Qiongqiong Zhou, Yee-Seir Kee, Christopher C. Poirier, Christine Jelinek, Jonathan Osborne, Srikanth Divi, Alexandra Surcel, Pablo A. Iglesias, Marie E. Will and Robert J. Cotter.

Other authors are Ulrike S Eggert of Harvard Medical School and Annette
Müller-Taubenberger of the Ludwig-Maximillians-University, Munich.
On the Web:
Doug Robinson: http://www.hopkinsmedicine.org/cellbio/robinson/index.html
Current Biology: http://www.cell.com/current-biology/

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.cell.com/current-biology/
http://www.hopkinsmedicine.org/cellbio/robinson/index.html

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>