Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers look at reducing yield loss for crops under stress

31.03.2010
People feel it, animals feel it, and yes, plants sense it too.
It's stress.

Plant researchers are taking a long look at stress in order to improve crop productivity, especially when faced with issues of climate change.

"Imagine what a plant goes through when it hasn't rained for over a week and it's feeling dry - its leaves are wilting," says Stephen Howell, professor of genetics, development and cell biology at Iowa State University's Plant Sciences Institute. "Add in some strong afternoon sunshine with no option to move into the shade because its roots are planted in the ground. That's stress. And the plant has got to stand there and deal with it!"

Understanding and eventually curbing crop susceptibility to certain stresses could allow for higher yields during drought years in the agricultural areas of the world. It may also allow drier areas of the planet to support sustainable yields and profitable crops, according to Howell.

Howell studies the model plant system Arabidopsis, a relative of mustard, with the long-term goal of applying discoveries to crop plants. He, along with postdoctoral researcher Jian-Xiang Liu, recently released research that outlines new features about plant stress response mechanisms in Arabidopsis. The research is highlighted in the March 5 issue of the journal The Plant Cell.

"The system protects plants from adverse environmental conditions, but these responses slow or delay growth," explains Howell. "So there's a tradeoff."

Plants respond to different types of stress, such as salt or heat, through multifaceted molecular signaling pathways. Understanding these pathways -- identifying the key molecules and their specific roles -- provides a treasure trove of opportunity for molecular breeding approaches to enhance the ability of crop plants to survive stressful conditions without major yield loss.

Howell and his colleagues have determined how special molecular indicators stationed inside the cell, but outside the nucleus, respond when stress warning bells go off. These sensors pick up on cues that appear as misfolded proteins.

These misfolded proteins are recognized as untidy. Much like a meticulous housekeeper would realize something was wrong if he or she discovered heaps of unfolded clothes in the closet, according to Howell.

"Correct folding is very important to the function of a protein. Incorrectly folded proteins or unfolded proteins will malfunction," says Howell. "But protein folding is a very finicky process and can mess up when environmental conditions are bad, as during a period of intense heat. Under these conditions, unfolded proteins accumulate and alarm bells are set off in the plant cell."

When these alarm bells go off inside the plant cell, the sensor molecules, called molecular-associated transcription factors, are unleashed. They enter the cell's nucleus -- its command center -- and turn on specific genes that send out reinforcements to help the protein-folding process.

In the research, Howell and his colleagues reveal how these transcription factors find and activate their target genes. When coupled with a previous study from this group, the paper describes how there are actually two sets of factors involved. One set specializes in activating genes in response to salt stress. The factor in this study responds to heat stress and the accumulation of unfolded proteins. Together they help plants withstand a variety of stresses.

Stephen H. Howell | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>