Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers observe thousands of protein switches

10.09.2015

Each cell comprises approximately 12,000 proteins, which act like small machines to carry out various cellular processes. Researcher of the MPI of Biochemistry in Martinsried developed the method ‘EasyPhos’ to identify the activity of these proteins on a global scale.

Using this technology, they revealed that the binding of the hormone insulin to the cell surface affects more than 1,000 proteins. These methods, which rely on mass spectrometry, enable the identification of the regulation of each of these proteins, and simplifies the simultaneous analysis of many samples in parallel. Therefore, EasyPhos is a breakthrough in deciphering the complex processes of healthy and diseased cells.


Ionization of the sample with electrospray prior to the mass spectrometer measurement.

Copyright: MPI of Biochemistry

When insulin binds to the surface of a cell, a vast number of processes are activated. These allow the cell to respond to changing nutrient status, for example to absorb glucose after a meal. To enact these processes many different proteins are needed, which act like small machines within the cell. Their activity modulated by ‘phosphorylation’ – whereby a small phosphate molecule is added to the proteins at specific sites acting like a switch.

Researchers in the laboratory of Matthias Mann developed a method, which they called “EasyPhos” that allows them to identify the phosphorylation of proteins on a large scale within many cell or tissue samples.

Through mass spectrometric analysis, which identifies proteins by their masses, nearly all proteins can be characterized, even the activation of unknown ones. Their study shows that binding of insulin at the surface of mouse liver cells leads to activity changes in the phosphorylation of more than 1,000 of the 12,000 proteins existing in every cell.

“In this study, we used this technology to analyze phosphorylation in a time course, capturing the dynamics of insulin signaling,” says Sean Humphrey, the lead researcher of the study. Using EasyPhos, only small amounts of sample are needed, and the procedure is optimized for the measurement of many different cells or tissue samples.

This opens up the technology to a larger number of biological applications. With every measurement, the researchers obtain a huge amount of data. They therefore work closely with computational scientists at the MPI of Biochemistry who develop specific software to assist with data analysis.

Matthias Mann points out that the analysis of the proteome is of great importance. While genomic researchers analyze the DNA, which is the blueprint of the proteins, proteomics researchers directly observe these proteins at work.

This technology enables the analysis and understanding of the complex and dynamic processes within the cells, revealing important insights into these processes. In the future, EasyPhos will enable the comparison of activation patterns in diseased cells with those of healthy cells or tissues, and will therefore help to uncover the malfunction and causes of complex diseases.
[CM]

Original publication:
S.J. Humphrey, S.B. Azimifar, M. Mann: High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nature Biotechnology, September, 2015
DOI: 10.1038/nbt.3327
www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.3327.html

Contact:
Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: mmann@biochem.mpg.de
http://www.biochem.mpg.de/mann

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
http://www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press releases of the MPI of Biochemistry
http://www.biochem.mpg.de/mann - Website of the Research Department "Proteomics and Signal Transduction" (Matthias Mann)

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>