Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers observe thousands of protein switches

10.09.2015

Each cell comprises approximately 12,000 proteins, which act like small machines to carry out various cellular processes. Researcher of the MPI of Biochemistry in Martinsried developed the method ‘EasyPhos’ to identify the activity of these proteins on a global scale.

Using this technology, they revealed that the binding of the hormone insulin to the cell surface affects more than 1,000 proteins. These methods, which rely on mass spectrometry, enable the identification of the regulation of each of these proteins, and simplifies the simultaneous analysis of many samples in parallel. Therefore, EasyPhos is a breakthrough in deciphering the complex processes of healthy and diseased cells.


Ionization of the sample with electrospray prior to the mass spectrometer measurement.

Copyright: MPI of Biochemistry

When insulin binds to the surface of a cell, a vast number of processes are activated. These allow the cell to respond to changing nutrient status, for example to absorb glucose after a meal. To enact these processes many different proteins are needed, which act like small machines within the cell. Their activity modulated by ‘phosphorylation’ – whereby a small phosphate molecule is added to the proteins at specific sites acting like a switch.

Researchers in the laboratory of Matthias Mann developed a method, which they called “EasyPhos” that allows them to identify the phosphorylation of proteins on a large scale within many cell or tissue samples.

Through mass spectrometric analysis, which identifies proteins by their masses, nearly all proteins can be characterized, even the activation of unknown ones. Their study shows that binding of insulin at the surface of mouse liver cells leads to activity changes in the phosphorylation of more than 1,000 of the 12,000 proteins existing in every cell.

“In this study, we used this technology to analyze phosphorylation in a time course, capturing the dynamics of insulin signaling,” says Sean Humphrey, the lead researcher of the study. Using EasyPhos, only small amounts of sample are needed, and the procedure is optimized for the measurement of many different cells or tissue samples.

This opens up the technology to a larger number of biological applications. With every measurement, the researchers obtain a huge amount of data. They therefore work closely with computational scientists at the MPI of Biochemistry who develop specific software to assist with data analysis.

Matthias Mann points out that the analysis of the proteome is of great importance. While genomic researchers analyze the DNA, which is the blueprint of the proteins, proteomics researchers directly observe these proteins at work.

This technology enables the analysis and understanding of the complex and dynamic processes within the cells, revealing important insights into these processes. In the future, EasyPhos will enable the comparison of activation patterns in diseased cells with those of healthy cells or tissues, and will therefore help to uncover the malfunction and causes of complex diseases.
[CM]

Original publication:
S.J. Humphrey, S.B. Azimifar, M. Mann: High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nature Biotechnology, September, 2015
DOI: 10.1038/nbt.3327
www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.3327.html

Contact:
Prof. Dr. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: mmann@biochem.mpg.de
http://www.biochem.mpg.de/mann

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
http://www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press releases of the MPI of Biochemistry
http://www.biochem.mpg.de/mann - Website of the Research Department "Proteomics and Signal Transduction" (Matthias Mann)

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>