Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Make Progress on Selectin Antagonists, Prerequisite to Anti-Inflammatory Drugs

10.07.2013
Uni Basel Researchers have identified a new class of selectin antagonists as lead structures for anti-inflammatory drugs. Their results were recently published in the Journal of the American Chemical Society.

The selectins belonging to the C-type lectins were identified in the early 1990s. There are numerous reports that underscore their biological significance. In diseases in which cell adhesion, extravasation of cells from the bloodstream or the migration of specific lymphocytes is implicated in the pathology, they present attractive therapeutic targets. Sialyl Lewisx (sLex) is the minimal carbohydrate epitope recognized by E-selectin.

As typical for carbohydrate-lectin interactions, the sLex/E-selectin interaction is characterized by low affinity and a short half-life in the range of seconds, one reason for this being the shallow and solvent-accessible binding site of E-selectin. While this behavior is necessary for selectin's physiological function, it is a challenge for the development of selectin antagonists for therapeutic applications.

Such low affinity poses challenges for researchers who would like to develop selectin antagonists as anti-inflammatory drugs. Researchers have turned to the use of mimetic compounds, which lack the disadvantageous pharmacodynamic and pharmacokinetic properties of carbohydrates. Although numerous contributions presenting mimetic structures with considerably improved affinities have been published, E-selectin antagonists with high affinities and slower dissociation rates are still required.

Promising Fragments Identified

In a recent article published in the Journal of the American Chemical Society, the research group of Professor Beat Ernst at the University of Basel describes a fragment-based approach guided by nuclear magnetic resonance, which led to the identification of fragments binding to a second site in close proximity to the sLex binding site. The best fragments were connected to a mimic of sLex via triazole linkers of different length, and evaluated by surface plasmon resonance. This generated a range of new compounds with markedly improved affinity to E-selectin.

Detailed analysis of the five most promising candidates revealed antagonists with KD values ranging from 30 to 89 nM. In addition, half-lives of several minutes were observed for the complex of E-selectin with the fragment-based selectin antagonists. This new class of selectin antagonists exhibits a promising starting point for the development of selectin-based anti-inflammatory drugs.

Broader Applications

With their article, the authors contribute valuable information to the selectin field, in which Prof. Ernst and his team have been active for many years. In collaboration with GlycoMimetics, Inc., they have recently successfully promoted a selectin antagonist to clinical trials. Furthermore, similar fragment-based approaches can be applied to other lectin targets, which notoriously resist the identification of monovalent high-affinity ligands.

Original Citation
Jonas Egger, Céline Weckerle, Brian Cutting, Oliver Schwardt, Said Rabbani, Katrin Lemme, and Beat Ernst
Nanomolar E-Selectin Antagonists with Prolonged Half-Lives by a Fragment-Based Approach

Journal of the American Chemical Society, 2013, 135 (26), pp 9820–9828 | doi: 10.1021/ja4029582

Further Information
Prof. Dr. Beat Ernst, University of Basel, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland, Tel. +41 61 267 15 51, email: beat.ernst@unibas.ch

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch
http://dx.doi.org/10.1021/ja4029582

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>