Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Make Progress on Selectin Antagonists, Prerequisite to Anti-Inflammatory Drugs

10.07.2013
Uni Basel Researchers have identified a new class of selectin antagonists as lead structures for anti-inflammatory drugs. Their results were recently published in the Journal of the American Chemical Society.

The selectins belonging to the C-type lectins were identified in the early 1990s. There are numerous reports that underscore their biological significance. In diseases in which cell adhesion, extravasation of cells from the bloodstream or the migration of specific lymphocytes is implicated in the pathology, they present attractive therapeutic targets. Sialyl Lewisx (sLex) is the minimal carbohydrate epitope recognized by E-selectin.

As typical for carbohydrate-lectin interactions, the sLex/E-selectin interaction is characterized by low affinity and a short half-life in the range of seconds, one reason for this being the shallow and solvent-accessible binding site of E-selectin. While this behavior is necessary for selectin's physiological function, it is a challenge for the development of selectin antagonists for therapeutic applications.

Such low affinity poses challenges for researchers who would like to develop selectin antagonists as anti-inflammatory drugs. Researchers have turned to the use of mimetic compounds, which lack the disadvantageous pharmacodynamic and pharmacokinetic properties of carbohydrates. Although numerous contributions presenting mimetic structures with considerably improved affinities have been published, E-selectin antagonists with high affinities and slower dissociation rates are still required.

Promising Fragments Identified

In a recent article published in the Journal of the American Chemical Society, the research group of Professor Beat Ernst at the University of Basel describes a fragment-based approach guided by nuclear magnetic resonance, which led to the identification of fragments binding to a second site in close proximity to the sLex binding site. The best fragments were connected to a mimic of sLex via triazole linkers of different length, and evaluated by surface plasmon resonance. This generated a range of new compounds with markedly improved affinity to E-selectin.

Detailed analysis of the five most promising candidates revealed antagonists with KD values ranging from 30 to 89 nM. In addition, half-lives of several minutes were observed for the complex of E-selectin with the fragment-based selectin antagonists. This new class of selectin antagonists exhibits a promising starting point for the development of selectin-based anti-inflammatory drugs.

Broader Applications

With their article, the authors contribute valuable information to the selectin field, in which Prof. Ernst and his team have been active for many years. In collaboration with GlycoMimetics, Inc., they have recently successfully promoted a selectin antagonist to clinical trials. Furthermore, similar fragment-based approaches can be applied to other lectin targets, which notoriously resist the identification of monovalent high-affinity ligands.

Original Citation
Jonas Egger, Céline Weckerle, Brian Cutting, Oliver Schwardt, Said Rabbani, Katrin Lemme, and Beat Ernst
Nanomolar E-Selectin Antagonists with Prolonged Half-Lives by a Fragment-Based Approach

Journal of the American Chemical Society, 2013, 135 (26), pp 9820–9828 | doi: 10.1021/ja4029582

Further Information
Prof. Dr. Beat Ernst, University of Basel, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland, Tel. +41 61 267 15 51, email: beat.ernst@unibas.ch

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch
http://dx.doi.org/10.1021/ja4029582

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>