Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Link DNA to Nanostructures

22.09.2011
Work May Pave Way for Development of New Materials

Assembly of nanostructures using DNA may lead to the production of new materials with a wide range of applications from electronics to tissue engineering. Researchers in the Institute for Nanoscience and Engineering at the University of Arkansas have produced building blocks for such material by controlling the number, placement and orientation of DNA linkers on the surface of colloidal nanoparticles.

Their work is featured as the “hot paper” in the current issue of Angewandte Chemie International Edition, the weekly scientific journal of the German Chemical Society.

“We have demonstrated a strategy to place ‘DNA linkers’ on a nanoparticle at specific angles relative to each other so that we may produce building blocks with well-defined arrangements of DNA in all dimensions,” said Jin-Woo Kim, professor of biological engineering. “The specific number and orientation of DNA strands on the nanoparticles allow greater control over the ultimate shape of nanostructures.”

DNA linkers are areas on the nanoparticles that functionally allow connection with other nanoparticles. In this case, connection is achieved through a type of DNA hybridization reaction.

The simple and sustainable strategy involves attaching strands of DNA to functionalized nanoparticles one strand after the other rather than all at the same time. The nanoparticle with the first strand serves as the starting material for the second strand. The nanoparticle with these two strands together serves as the starting material for the third, and so on. In addition to facilitating greater control over the shape of the structure, assembling in this sequential manner renders the process more reproducible and scalable, which helps with the assembly of complex, hybrid nanoscale architectures at all scales and in all dimensions.

The building blocks, which the researchers call “nBLOCKs,” remained stable under volatile conditions. They exhibited chemical stability and water solubility during ligand replacement reactions. There were no apparent changes in physical and chemical properties when the building blocks were stored at 4 degrees Celsius for at least a month. Such promising stability shows high potential for their practical application. The researchers continue working on further optimizing their physical and chemical stability.

Kim said the building strategy can be generalized for other types of nanoparticles, meaning that construction of other types of building blocks with specific, desired functions may be achieved. The technology has the potential to transform many fields of research, including biology, medicine, chemistry, physics, materials science and engineering.

The research was supported by the National Science Foundation, the University of Arkansas Division of Agriculture and the Arkansas Biosciences Institute.

The work was a multidisciplinary, collaborative effort with Russell Deaton, professor of computer science and computer engineering. Jeong-Hwan Kim, postdoctoral associate at the Bio/Nano Technology Laboratory, also made a significant contribution to the project.

Jin-Woo Kim is a professor in the Dale Bumpers College of Agricultural, Food and Life Sciences and the College of Engineering. He works in the Institute for Nanoscience and Engineering at the University of Arkansas and directs the Bio/Nano Technology Laboratory.

CONTACTS:
Jin-Woo Kim, professor
Biological and Agricultural Engineering
479-575-3402, jwkim@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>