Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify novel virus that could cause respiratory disease in ball pythons

09.09.2014

Researchers have identified a novel virus that could be the source of a severe, sometimes fatal respiratory disease that has been observed in captive ball pythons since the 1990s. The work is published this week in mBio®, the online open-access journal of the American Society for Microbiology.

Investigators observed the virus, which they named ball python nidovirus, in eight snakes with pneumonia; virus levels were highest in the animals' lungs and other respiratory tract tissues. The team also sequenced the genome of the virus, finding it to be the largest of any RNA virus yet described.

Ball pythons have become one of the most popular types of reptiles sold and kept as pets, the authors said, because of their relatively modest size, docile behavior and ease of care. Respiratory disease has been noted in these animals since the 1990s but until now a potential cause has not been identified, said senior study author Joseph L. DeRisi, PhD, chair of the Department of Biochemistry and Biophysics at the University of California, San Francisco, in part because of the limitations of available technology.

"This is really exciting because up to this point there have been no known viruses of this type in reptiles," DeRisi said. "Some of the most feared diseases we know of, like Ebola virus, HIV, Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS), did not arise from people but have been transferred originally from animals. Our work suggests there may be very large reservoirs of genetic diversity of viral families that can cause human disease in under studied organisms, like reptiles. We would do well to look broadly across all species."

DeRisi and colleagues at seven other institutions across the country studied tissue samples from ball pythons with symptoms of respiratory disease from seven collections in Florida, Oklahoma, Pennsylvania, Texas and Wisconsin. Autopsies on the animals found lesions in the animals' upper and lower respiratory tracts, and additional lesions in other areas of the body. Using an electron microscope, investigators observed virus-like particles in the cells lining the lungs of two snakes.

To identify a cause of disease, the scientists used a technique called shotgun metagenomics to sequence RNA of eight of the snakes, finding a novel nidovirus in all of them, but not in a search of tissues from 57 other snakes not affected by pneumonia, collected for other studies. Additional work found that the virus was most prevalent in the sick animals' respiratory tract tissue, and that the nidovirus is most similar to a subset of the nidoviruses called toroviruses, which infect mammals and ray-finned fish.

"The identification of a novel nidovirus in reptiles contributes to our understanding of the biology and evolution of related viruses, and its association with lung disease in pythons is a promising step toward elucidating an etiology for this long-standing veterinary disease," DeRisi said. "Our report will enable diagnostics that will assist in determining the role of this virus in the causation of disease, which would allow control of the disease in zoos and private collections."

Yet to be determined, said study coauthor Mark Stenglein, PhD, is how the virus is spread, whether ball pythons are the primary natural host for the virus, and how widespread the virus is in the wild. In a previous study published in mBio in August 2012, DeRisi, Stenglein and colleagues discovered the first reptile arenavirus. The team is continuing work identifying reptilian viruses. "I think it's the tip of the iceberg," DeRisi said. Indeed, within the same month, two additional groups reported identification of a nearly identical virus, in a total of five additional pythons, all with lung disease.

###

The current study was supported in part by the Howard Hughes Medical Institute, the National Institutes of Health and the Pacific Southwest Regional Center of Excellence.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | Eurek Alert!

Further reports about: RNA Respiratory Syndrome animals lung microbiology pythons reptiles viruses

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>