Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify new protein markers that may improve understanding of heart disease

31.03.2014

Newly identified markers of inflammation have potential to contribute to better understanding of heart disease

Researchers at the Intermountain Medical Center Heart Institute in Murray, Utah, have discovered that elevated levels of two recently identified proteins in the body are inflammatory markers and indicators of the presence of cardiovascular disease.

These newly identified markers of inflammation, GlycA and GlycB, have the potential to contribute to better understanding of the inflammatory origins of heart disease and may be used in the future to identify a heart patient's future risk of suffering a heart attack, stroke, or even death.

Inflammation occurs in the body in response to tissue damage, irritation, or infection. Inflammation is often associated with injury (i.e., sprained ankle), infection (i.e., strep throat), and auto-immune diseases (i.e., rheumatoid arthritis). However, it has been shown that inflammation is also a risk factor for heart disease.

"There are at least two benefits evident from this study," said J. Brent Muhlestein, MD, lead researcher and co-director of cardiovascular research at the Intermountain Medical Center Heart Institute. "First, a new marker of heart attack or stroke may help us to more effectively identify which patients are at risk. Second, now that we know GlycA and GlycB are important predictors of heart disease, we'll seek to understand more about the physiology of these proteins – what causes them to increase and how we can we treat elevated levels."

Levels of GlycA and GlycB were determined from a blood test called nuclear magnetic resonance (NMR) spectroscopy, which was developed to determine the number of lipid particles contained in different cholesterol parameters.

Testing for GlycA and GlycB by NMR spectroscopy uses signals that arise from the binding of glucose molecules to a variety of circulating inflammatory proteins, especially fibrinogen, α1-antichymotrypsin, haptoglobin-1, α1-antitrypsin, complement C3 and α1-acid glycoprotein.

Like C-reactive protein, one of the most well-known and studied inflammatory markers shown to be associated with cardiovascular disease, GlycA and GlycB are acute phase proteins with plasma concentrations that increase or decrease in response to changes in the levels of inflammation throughout the body.

This is one of the first studies ever to evaluate the association of GlycA and GlycB to cardiovascular disease. In this study, almost 3,000 patients who underwent heart catheterization to determine the presence of coronary artery disease with a minimum of five years of follow-up were evaluated.

Of the 48 percent of heart patients who died, suffered a heart attack, stroke, or heart failure during follow-up, the majority had significantly higher baseline levels of GlycA and GlycB. Specifically, those with levels in the top 25 percent were more than 30 percent more likely to have an adverse cardiovascular event compared to those with levels in the lowest 25 percent, even after other risk factors were taken into account.

"The next step will be to determine how GycA and GlycB correlate with, or are independent of, other common inflammatory markers like C-reactive protein," said Dr. Muhlestein.

###

Other members of the Intermountain Medical Center Heart Institute research team include: Jeffrey L. Anderson, MD, and Heidi T. May, PhD, MSPH.

Jess C. Gomez | EurekAlert!

Further reports about: C-reactive C3 NMR inflammation protein proteins spectroscopy stroke

More articles from Life Sciences:

nachricht Novel 'repair system' discovered in algae may yield new tools for biotechnology
29.07.2016 | Boyce Thompson Institute

nachricht Molecular troublemakers instead of antibiotics?
29.07.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>