Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify new protein markers that may improve understanding of heart disease

31.03.2014

Newly identified markers of inflammation have potential to contribute to better understanding of heart disease

Researchers at the Intermountain Medical Center Heart Institute in Murray, Utah, have discovered that elevated levels of two recently identified proteins in the body are inflammatory markers and indicators of the presence of cardiovascular disease.

These newly identified markers of inflammation, GlycA and GlycB, have the potential to contribute to better understanding of the inflammatory origins of heart disease and may be used in the future to identify a heart patient's future risk of suffering a heart attack, stroke, or even death.

Inflammation occurs in the body in response to tissue damage, irritation, or infection. Inflammation is often associated with injury (i.e., sprained ankle), infection (i.e., strep throat), and auto-immune diseases (i.e., rheumatoid arthritis). However, it has been shown that inflammation is also a risk factor for heart disease.

"There are at least two benefits evident from this study," said J. Brent Muhlestein, MD, lead researcher and co-director of cardiovascular research at the Intermountain Medical Center Heart Institute. "First, a new marker of heart attack or stroke may help us to more effectively identify which patients are at risk. Second, now that we know GlycA and GlycB are important predictors of heart disease, we'll seek to understand more about the physiology of these proteins – what causes them to increase and how we can we treat elevated levels."

Levels of GlycA and GlycB were determined from a blood test called nuclear magnetic resonance (NMR) spectroscopy, which was developed to determine the number of lipid particles contained in different cholesterol parameters.

Testing for GlycA and GlycB by NMR spectroscopy uses signals that arise from the binding of glucose molecules to a variety of circulating inflammatory proteins, especially fibrinogen, α1-antichymotrypsin, haptoglobin-1, α1-antitrypsin, complement C3 and α1-acid glycoprotein.

Like C-reactive protein, one of the most well-known and studied inflammatory markers shown to be associated with cardiovascular disease, GlycA and GlycB are acute phase proteins with plasma concentrations that increase or decrease in response to changes in the levels of inflammation throughout the body.

This is one of the first studies ever to evaluate the association of GlycA and GlycB to cardiovascular disease. In this study, almost 3,000 patients who underwent heart catheterization to determine the presence of coronary artery disease with a minimum of five years of follow-up were evaluated.

Of the 48 percent of heart patients who died, suffered a heart attack, stroke, or heart failure during follow-up, the majority had significantly higher baseline levels of GlycA and GlycB. Specifically, those with levels in the top 25 percent were more than 30 percent more likely to have an adverse cardiovascular event compared to those with levels in the lowest 25 percent, even after other risk factors were taken into account.

"The next step will be to determine how GycA and GlycB correlate with, or are independent of, other common inflammatory markers like C-reactive protein," said Dr. Muhlestein.

###

Other members of the Intermountain Medical Center Heart Institute research team include: Jeffrey L. Anderson, MD, and Heidi T. May, PhD, MSPH.

Jess C. Gomez | EurekAlert!

Further reports about: C-reactive C3 NMR inflammation protein proteins spectroscopy stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>