Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify the metabolic signaling pathway responsible for dyslipidemia

06.04.2011
Researchers from Boston University School of Medicine (BUSM), including Yu Li, PhD, and other colleagues, have demonstrated that a nutrient sensing pathway is involved in the disruption of cellular lipid homeostasis in obese and insulin resistant mice fed a diet high in fat and sucrose.

This nutrient sensing pathway, which is described in the current on-line issue of Cell Metabolism, may also have implications for the health benefits of polyphenols containing foods against fatty liver, hyperlipidemia, and atherosclerosis associated with obesity and type 2 diabetes.

Although it is well known that elevated serum cholesterol and triglyceride levels and fatty liver are caused by increased hepatic lipid synthesis and/or decreased lipid clearance in patients with obesity and diabetes, the underlying mechanistic pathways of these changes remains unknown.

The master regulators of lipid metabolism that were studied are called AMPK and SREBP. The researchers used a molecular biology approach, cell culture system and animal models to indicate that dysregulation of AMPK, an energy sensor, and SREBP, a protein that is important regulator for lipid biosynthesis, are affected in obesity. Mice fed a diet with high fat and high sucrose became obese and had insulin resistance and elevated circulating levels of cholesterol and triglyceride which led to accelerated atherosclerosis. In contrast, dietary supplementation with S17834, a polyphenol, significantly improved the metabolic disorder, lipid levels and atherosclerosis.

“Our findings suggest that AMPK suppression and SREBP activation are a root cause of fatty liver and hyperlipidemia in type 2 diabetes and its associated vascular complications such as atherosclerosis,” said senior author Mengwei Zang, MD, PhD, an assistant professor of medicine at BUSM.

According to the researchers the potential health benefits of polyphenols have been gaining increasing interest. “In our studies, AMPK is potently and persistently activated by polyphenols including the natural compound resveratrol, which is present in red wine, grapes and green tea, as well as the synthetic polyphenol S17834, which is a drug candidate provided by Servier Pharmaceutical Company,” explained Zang.

“AMPK directly suppresses SREBP via its phosphorylation, inhibiting the activity of its target lipogenic enzymes in the liver, and accounting for the protective effects of the polyphenols on fatty liver, blood lipids and diabetic atherosclerosis,” she added.

The researchers believe these findings may lead to the development of new drugs that could stop or slow diabetes progression or improve current treatments.

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>