Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify mechanism used by gene to promote metastasis in human cancer cells

01.10.2008
Virginia Commonwealth University Institute of Molecular Medicine and VCU Massey Cancer Center researchers have discovered how a gene, melanoma differentiation associated gene-9/syntenin (mda-9/syntenin), interacts with an important signaling protein to promote metastasis in human melanoma cells, a discovery that could one day lead to the development of the next generation of anti-metastatic drugs for melanoma and other cancers.

Metastatic disease is one of the primary challenges in cancer therapy. When cancer cells are localized in the body, specialists may be able to surgically remove the diseased area. However, when cancer metastasizes or spreads to sites remote from the primary tumor through the lymph system and blood vessels to new target sites, treatment becomes more difficult and in many instances ineffective.

Previous studies have shown that mda-9/syntenin regulates cell motility and can alter certain biochemical and signaling pathways leading to acquisition of metastatic ability. However, the exact mechanisms involved with these processes have not been well understood until now.

In the study, published online the week of Sept. 29 in the Early Edition of the Proceedings of the National Academy of Sciences, researchers report on the molecular mechanisms by which mda-9/syntenin is able to mediate invasion, migration, anchorage-independent growth and metastasis by physically interacting with c-Src, a key signaling protein involved with tumor cell growth and metastasis.

The team examined human cancer cells in the laboratory using a relevant human melanoma metastasis model and discovered how mda-9/syntenin was able to activate, or switch-on, the expression of c-Src. The expression of c-Src led to an increase in the formation of an active FAK/c-Src signaling complex. According to the researchers, this interaction triggers a signaling cascade resulting in increased cancer cell motility, invasion and metastasis.

"Mda-9/syntenin may represent a potential new molecular target for melanoma therapy that could be used to develop therapeutic reagents for treating this cancer as well as other cancers originating in the breast and stomach," said Paul B. Fisher, M.Ph., Ph.D., professor and chair of the Department of Human and Molecular Genetics and director of the VCU Institute of Molecular Medicine in the VCU School of Medicine.

"By disrupting the interaction between mda-9/syntenin and c-Src, it may be possible to prevent metastasis by blocking those signaling changes necessary for this process," he said.

According to Fisher, using this strategy it may be possible to identify compounds that serve this function and are effective therapeutic molecules for counteracting this final and frequently lethal stage of tumor progression.

The team will conduct further investigations to determine if small molecule drugs can be identified and developed to prevent metastasis by targeting this critical interaction between mda-9/syntenin and c-Src. Further studies are also in progress to determine how general these interactions are in mediating metastasis of other human tumors in addition to melanoma.

Sathy Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>