Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify enzyme that regulates degradation of damaged proteins

28.09.2011
A study by scientists at the University of California, San Diego and UC Irvine has identified an enzyme called a proteasome phosphatase that appears to regulate removal of damaged proteins from a cell. The understanding of how this process works could have important implications for numerous diseases, including cancer and Parkinson's disease.

The study – led by Jack E. Dixon, PhD, professor of Pharmacology, Cellular & Molecular Medicine, and Chemistry/Biochemistry at the University of California, San Diego and Vice President and chief scientific officer of the Howard Hughes Medical Institute – appears this week in the online edition of Proceedings of the National Academy of Sciences (PNAS).

Proteasomes are very large protein complexes found in all eukaryote cells, in archaea (a group of single-celled microorganisms) and in some bacteria. These basket-like chambers are essential for removing damaged or misfolded proteins from the cell. The inability of a defective proteasome to destroy misfolded or damaged proteins can be cataclysmic.

Scientists have known for some time that the proteasome can be regulated by a process called phosphorylation – a chemical process by which a phosphate is added to a protein in order to activate or deactivate it, and which plays a crucial role in biological functions, controlling nearly every cellular process, including metabolism, gene transcription and translation, cell movement, and cell death. However, researchers had a poor understanding of the kinases that put the phosphate residues on the proteasome and almost no understanding of the phosphatases that remove the phosphates.

Now researchers have described for the first time how a eukaryotic phosphatase known as ubiquitin-like domain-containing C-terminal phosphatase (UBLCP1) regulates nuclear proteasome activity, revealing that UBLCP1 decreases proteasome activity by selectively dephosphorylating the proteasome.

"So far, UBLCP1 is the only proteasome-specific phosphatase identified to exist in mammalian cells," said Dixon. "We are just beginning to understand how it alters proteasome activity, but one can anticipate that defects in the phosphatase activity are likely to result in major alterations in the ability of the cell to remove damaged protein."

Additional contributors include first author Xing Guo, James L. Engel and Junyu Xiao, UCSD Department of Pharmacology; Vincent S. Tagliabracci, Howard Hughes Medical Institute; Xiaorong Wang and Lan Huang, UC Irvine.

Funding was provided by the National Institutes of Health, a National Cancer Institute Training Grant and a Susan G. Komen postdoctoral fellowship to Guo.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>