Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify DNA region linked to depression

16.05.2011
Researchers at Washington University School of Medicine in St. Louis and King's College London have independently identified DNA on chromosome 3 that appears to be related to depression.

Major depression affects approximately 20 percent of people at some point during their lives, and family studies have long suggested that depression risk is influenced by genetics. The new studies identify a DNA region containing up to 90 genes. Both are published May 16 in the American Journal of Psychiatry.

"What's remarkable is that both groups found exactly the same region in two separate studies," says senior investigator Pamela A. F. Madden, PhD, professor of psychiatry at Washington University. "We were working independently and not collaborating on any level, but as we looked for ways to replicate our findings, the group in London contacted us to say, 'We have the same linkage peak, and it's significant.'"

Madden and the other researchers believe it is likely that many genes are involved in depression. While the new findings won't benefit patients immediately, the discovery is an important step toward understanding what may be happening at the genetic and molecular levels, she says.

The group at King's College London followed more than 800 families in the United Kingdom affected by recurrent depression. The Washington University group gathered data from 91 families in Australia and another 25 families in Finland. At least two siblings in each family had a history of depression, but the Australian and Finnish participants were studied originally because they were heavy smokers.

"Major depression is more common in smokers, with lifetime reports as high as 60 percent in smokers seeking treatment," says lead author Michele L. Pergadia, PhD, research assistant professor of psychiatry at Washington University. "Smokers with depression tend to experience more nicotine withdrawal and may be more likely to relapse when trying to quit. Previous studies suggest that smoking and depression run together in families. In our study, we detected a region of the genome that travels with depression in families of smokers."

Meanwhile, the group in England was concerned primarily with recurrent depression. Although some of the families in the King's College London survey may have included heavy smokers, the researchers were primarily interested in people who were depressed.

"These findings are truly exciting," says Gerome Breen, PhD, lead author of the King's College London study. "For the first time, we have found a genetic region associated with depression, and what makes the findings striking is the similarity of the results between our studies."

From two different data sets, gathered for different purposes and studied in different ways, the research teams found what is known as a linkage peak on chromosome 3. That means that the depressed siblings in the families in both studies carried many of the same genetic variations in that particular DNA region.

Unlike many genetic findings, this particular DNA region has genome-wide significance. Often when researchers correct statistically for looking across the entire genome, what appeared originally to be significant becomes much less so. That was not the case with these studies.

Although neither team has isolated a gene, or genes, that may contribute to depression risk, the linkage peak is located on a part of the chromosome known to house the metabotropic glutamate receptor 7 gene (GRM7). Some other investigators have found suggestive associations between parts of GRM7 and major depression.

"Our linkage findings highlight a broad area," Pergadia says. "I think we're just beginning to make our way through the maze of influences on depression. The U.K. samples came from families known to be affected by depression. Our samples came from heavy smokers, so one thing we might do as we move forward is try to better characterize these families, to learn more about their smoking and depression histories, in addition to all of their genetic information in this area."

Pergadia says it may be worthwhile to start by combining the data sets from the two studies to see whether this region of chromosome 3 continues to exert a significant effect.

Although there is still work to do, the new studies are a very important step on the road to understanding how genes influence depression, according to Peter McGuffin, MB, PhD, director of the Medical Research Council Social, Genetic and Developmental Psychiatry Centre at King's College London.

"The findings are groundbreaking," says McGuffin, senior author of that study. "However, they still only account for a small proportion of the genetic risk for depression. More and larger studies will be required to find the other parts of the genome involved."

Pergadia ML, et al. A 3p26-3p25 genetic linkage finding for DSM-IV major depression in heavy smoking families. American Journal of Psychiatry, published online May 16, 2011. ajp.psychiatryonline.org

Breen G, et al. A genome-wide significant linkage for severe depression on chromosome 3: the Depression Network Study. American Journal of Psychiatry, published online May 16, 2011. ajp.psychiatryonline.org

This work was supported by grants from the National Institutes of Health (NIH); the National Institute for Health and Welfare, Helsinki, Finland; the Institute for Molecular Medicine, Finland; the Queensland Institute of Medical Research, Brisbane, Australia. For a complete list of funders and disclosures, please see the manuscript in the American Journal of Psychiatry.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Australia Barnes-Jewish DNA GRM7 Medical Wellness chromosome 3 health services

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>