Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify DNA region linked to depression

16.05.2011
Researchers at Washington University School of Medicine in St. Louis and King's College London have independently identified DNA on chromosome 3 that appears to be related to depression.

Major depression affects approximately 20 percent of people at some point during their lives, and family studies have long suggested that depression risk is influenced by genetics. The new studies identify a DNA region containing up to 90 genes. Both are published May 16 in the American Journal of Psychiatry.

"What's remarkable is that both groups found exactly the same region in two separate studies," says senior investigator Pamela A. F. Madden, PhD, professor of psychiatry at Washington University. "We were working independently and not collaborating on any level, but as we looked for ways to replicate our findings, the group in London contacted us to say, 'We have the same linkage peak, and it's significant.'"

Madden and the other researchers believe it is likely that many genes are involved in depression. While the new findings won't benefit patients immediately, the discovery is an important step toward understanding what may be happening at the genetic and molecular levels, she says.

The group at King's College London followed more than 800 families in the United Kingdom affected by recurrent depression. The Washington University group gathered data from 91 families in Australia and another 25 families in Finland. At least two siblings in each family had a history of depression, but the Australian and Finnish participants were studied originally because they were heavy smokers.

"Major depression is more common in smokers, with lifetime reports as high as 60 percent in smokers seeking treatment," says lead author Michele L. Pergadia, PhD, research assistant professor of psychiatry at Washington University. "Smokers with depression tend to experience more nicotine withdrawal and may be more likely to relapse when trying to quit. Previous studies suggest that smoking and depression run together in families. In our study, we detected a region of the genome that travels with depression in families of smokers."

Meanwhile, the group in England was concerned primarily with recurrent depression. Although some of the families in the King's College London survey may have included heavy smokers, the researchers were primarily interested in people who were depressed.

"These findings are truly exciting," says Gerome Breen, PhD, lead author of the King's College London study. "For the first time, we have found a genetic region associated with depression, and what makes the findings striking is the similarity of the results between our studies."

From two different data sets, gathered for different purposes and studied in different ways, the research teams found what is known as a linkage peak on chromosome 3. That means that the depressed siblings in the families in both studies carried many of the same genetic variations in that particular DNA region.

Unlike many genetic findings, this particular DNA region has genome-wide significance. Often when researchers correct statistically for looking across the entire genome, what appeared originally to be significant becomes much less so. That was not the case with these studies.

Although neither team has isolated a gene, or genes, that may contribute to depression risk, the linkage peak is located on a part of the chromosome known to house the metabotropic glutamate receptor 7 gene (GRM7). Some other investigators have found suggestive associations between parts of GRM7 and major depression.

"Our linkage findings highlight a broad area," Pergadia says. "I think we're just beginning to make our way through the maze of influences on depression. The U.K. samples came from families known to be affected by depression. Our samples came from heavy smokers, so one thing we might do as we move forward is try to better characterize these families, to learn more about their smoking and depression histories, in addition to all of their genetic information in this area."

Pergadia says it may be worthwhile to start by combining the data sets from the two studies to see whether this region of chromosome 3 continues to exert a significant effect.

Although there is still work to do, the new studies are a very important step on the road to understanding how genes influence depression, according to Peter McGuffin, MB, PhD, director of the Medical Research Council Social, Genetic and Developmental Psychiatry Centre at King's College London.

"The findings are groundbreaking," says McGuffin, senior author of that study. "However, they still only account for a small proportion of the genetic risk for depression. More and larger studies will be required to find the other parts of the genome involved."

Pergadia ML, et al. A 3p26-3p25 genetic linkage finding for DSM-IV major depression in heavy smoking families. American Journal of Psychiatry, published online May 16, 2011. ajp.psychiatryonline.org

Breen G, et al. A genome-wide significant linkage for severe depression on chromosome 3: the Depression Network Study. American Journal of Psychiatry, published online May 16, 2011. ajp.psychiatryonline.org

This work was supported by grants from the National Institutes of Health (NIH); the National Institute for Health and Welfare, Helsinki, Finland; the Institute for Molecular Medicine, Finland; the Queensland Institute of Medical Research, Brisbane, Australia. For a complete list of funders and disclosures, please see the manuscript in the American Journal of Psychiatry.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Australia Barnes-Jewish DNA GRM7 Medical Wellness chromosome 3 health services

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>