Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify 'carbohydrates in a coal mine' for cancer detection

04.03.2014

Researchers at New York University and the University of Texas at Austin have discovered that carbohydrates serve as identifiers for cancer cells.

Their findings, which appear in the journal Proceedings of the National Academy of Sciences, show how these molecules may serve as signals for cancer and explain what's going on inside these cells, pointing to new ways in which sugars function as a looking glass into the workings of their underlying structures.

"Carbohydrates can tell us a lot about what's going on inside of a cell, so they are potentially good markers for disease," said Lara Mahal, an associate professor in NYU's Department of Chemistry and the study's corresponding author. "Our study reveals how cancer cells produce certain 'carbohydrate signatures' that we can now identify."

Carbohydrates, or glycans, are complex cell-surface molecules that control multiple aspects of cell biology, including cancer metastasis. But less understood is the link between categories of cells and corresponding carbohydrate structures. That is, what do certain carbohydrates on a cell's surfaces tell us about its characteristics and inner workings or, more succinctly, how do you read a code backwards?

In the PNAS study, the researchers examined the role of microRNA, non-coding RNA that are regulators of the genome. Specific miRNAs—such as miR-200—play a role in controlling tumor growth. Using microarray technology developed by NYU's Mahal, the team examined cancer cells in an effort to see how they generated a carbohydrate signature. Specifically, they mapped how miRNA controls carbohydrate signatures.

In their analysis, the researchers could see that miRNA molecules serve as major regulators of the cell's surface-level carbohydrates—a discovery that showed, for the first time, that miRNA play a significant regulatory role in this part of the cell, also known as the glycome. Moreover, they could see which regulatory process was linked to specific carbohydrates.

"Carbohydrates aren't just telling you the type of cell they came from, but also by which process they were created," explains Mahal. "Our results showed that there are regulatory networks of miRNAs and that they are associated with specific carbohydrate codes."

###

The study was supported by a grant from the National Institutes of Health (7 DP2 OD004711-02).

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: carbohydrates glycans miRNA regulatory signals structures

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>