Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify 'carbohydrates in a coal mine' for cancer detection

04.03.2014

Researchers at New York University and the University of Texas at Austin have discovered that carbohydrates serve as identifiers for cancer cells.

Their findings, which appear in the journal Proceedings of the National Academy of Sciences, show how these molecules may serve as signals for cancer and explain what's going on inside these cells, pointing to new ways in which sugars function as a looking glass into the workings of their underlying structures.

"Carbohydrates can tell us a lot about what's going on inside of a cell, so they are potentially good markers for disease," said Lara Mahal, an associate professor in NYU's Department of Chemistry and the study's corresponding author. "Our study reveals how cancer cells produce certain 'carbohydrate signatures' that we can now identify."

Carbohydrates, or glycans, are complex cell-surface molecules that control multiple aspects of cell biology, including cancer metastasis. But less understood is the link between categories of cells and corresponding carbohydrate structures. That is, what do certain carbohydrates on a cell's surfaces tell us about its characteristics and inner workings or, more succinctly, how do you read a code backwards?

In the PNAS study, the researchers examined the role of microRNA, non-coding RNA that are regulators of the genome. Specific miRNAs—such as miR-200—play a role in controlling tumor growth. Using microarray technology developed by NYU's Mahal, the team examined cancer cells in an effort to see how they generated a carbohydrate signature. Specifically, they mapped how miRNA controls carbohydrate signatures.

In their analysis, the researchers could see that miRNA molecules serve as major regulators of the cell's surface-level carbohydrates—a discovery that showed, for the first time, that miRNA play a significant regulatory role in this part of the cell, also known as the glycome. Moreover, they could see which regulatory process was linked to specific carbohydrates.

"Carbohydrates aren't just telling you the type of cell they came from, but also by which process they were created," explains Mahal. "Our results showed that there are regulatory networks of miRNAs and that they are associated with specific carbohydrate codes."

###

The study was supported by a grant from the National Institutes of Health (7 DP2 OD004711-02).

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: carbohydrates glycans miRNA regulatory signals structures

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>