Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify 'carbohydrates in a coal mine' for cancer detection

04.03.2014

Researchers at New York University and the University of Texas at Austin have discovered that carbohydrates serve as identifiers for cancer cells.

Their findings, which appear in the journal Proceedings of the National Academy of Sciences, show how these molecules may serve as signals for cancer and explain what's going on inside these cells, pointing to new ways in which sugars function as a looking glass into the workings of their underlying structures.

"Carbohydrates can tell us a lot about what's going on inside of a cell, so they are potentially good markers for disease," said Lara Mahal, an associate professor in NYU's Department of Chemistry and the study's corresponding author. "Our study reveals how cancer cells produce certain 'carbohydrate signatures' that we can now identify."

Carbohydrates, or glycans, are complex cell-surface molecules that control multiple aspects of cell biology, including cancer metastasis. But less understood is the link between categories of cells and corresponding carbohydrate structures. That is, what do certain carbohydrates on a cell's surfaces tell us about its characteristics and inner workings or, more succinctly, how do you read a code backwards?

In the PNAS study, the researchers examined the role of microRNA, non-coding RNA that are regulators of the genome. Specific miRNAs—such as miR-200—play a role in controlling tumor growth. Using microarray technology developed by NYU's Mahal, the team examined cancer cells in an effort to see how they generated a carbohydrate signature. Specifically, they mapped how miRNA controls carbohydrate signatures.

In their analysis, the researchers could see that miRNA molecules serve as major regulators of the cell's surface-level carbohydrates—a discovery that showed, for the first time, that miRNA play a significant regulatory role in this part of the cell, also known as the glycome. Moreover, they could see which regulatory process was linked to specific carbohydrates.

"Carbohydrates aren't just telling you the type of cell they came from, but also by which process they were created," explains Mahal. "Our results showed that there are regulatory networks of miRNAs and that they are associated with specific carbohydrate codes."

###

The study was supported by a grant from the National Institutes of Health (7 DP2 OD004711-02).

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: carbohydrates glycans miRNA regulatory signals structures

More articles from Life Sciences:

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

nachricht NIH researchers identify striking genomic signature shared by 5 types of cancer
05.02.2016 | NIH/National Human Genome Research Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>