Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify 'carbohydrates in a coal mine' for cancer detection

04.03.2014

Researchers at New York University and the University of Texas at Austin have discovered that carbohydrates serve as identifiers for cancer cells.

Their findings, which appear in the journal Proceedings of the National Academy of Sciences, show how these molecules may serve as signals for cancer and explain what's going on inside these cells, pointing to new ways in which sugars function as a looking glass into the workings of their underlying structures.

"Carbohydrates can tell us a lot about what's going on inside of a cell, so they are potentially good markers for disease," said Lara Mahal, an associate professor in NYU's Department of Chemistry and the study's corresponding author. "Our study reveals how cancer cells produce certain 'carbohydrate signatures' that we can now identify."

Carbohydrates, or glycans, are complex cell-surface molecules that control multiple aspects of cell biology, including cancer metastasis. But less understood is the link between categories of cells and corresponding carbohydrate structures. That is, what do certain carbohydrates on a cell's surfaces tell us about its characteristics and inner workings or, more succinctly, how do you read a code backwards?

In the PNAS study, the researchers examined the role of microRNA, non-coding RNA that are regulators of the genome. Specific miRNAs—such as miR-200—play a role in controlling tumor growth. Using microarray technology developed by NYU's Mahal, the team examined cancer cells in an effort to see how they generated a carbohydrate signature. Specifically, they mapped how miRNA controls carbohydrate signatures.

In their analysis, the researchers could see that miRNA molecules serve as major regulators of the cell's surface-level carbohydrates—a discovery that showed, for the first time, that miRNA play a significant regulatory role in this part of the cell, also known as the glycome. Moreover, they could see which regulatory process was linked to specific carbohydrates.

"Carbohydrates aren't just telling you the type of cell they came from, but also by which process they were created," explains Mahal. "Our results showed that there are regulatory networks of miRNAs and that they are associated with specific carbohydrate codes."

###

The study was supported by a grant from the National Institutes of Health (7 DP2 OD004711-02).

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: carbohydrates glycans miRNA regulatory signals structures

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>