Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify novel biomarker for diabetes risk

17.09.2013
Researchers at the Vanderbilt Heart and Vascular Institute and Massachusetts General Hospital have identified a biomarker that can predict diabetes risk up to 10 years before onset of the disease.

Thomas J. Wang, M.D., director of the Division of Cardiology at Vanderbilt, along with colleagues at Massachusetts General Hospital, report their findings in the October issue of The Journal of Clinical Investigation.

The researchers conducted a study of 188 individuals who developed type 2 diabetes mellitus and 188 individuals without diabetes who were followed for 12 years as participants in the Framingham Heart Study.

"From the baseline blood samples, we identified a novel biomarker, 2-aminoadipic acid (2-AAA), that was higher in people who went on to develop diabetes than in those who did not," Wang said. "That information was above and beyond knowing their blood sugar at baseline, knowing whether they were obese, or had other characteristics that put them at risk."

Individuals who had 2-AAA concentrations in the top quartile had up to a fourfold risk of developing diabetes during the 12-year follow-up period compared with people in the lowest quartile.

"The caveat with these new biomarkers is that they require further evaluation in other populations and further work to determine how this information might be used clinically," Wang said.

The researchers also conducted laboratory studies to understand why this biomarker is elevated so well in advance of the onset of diabetes. They found that giving 2-AAA to mice alters the way they metabolize glucose. These molecules seem to influence the function of the pancreas, which is responsible for making insulin, the hormone that tells the body to take up blood sugar.

"2-AAA appears to be more than a passive marker. It actually seems to play a role in glucose metabolism," Wang said. "It is still a bit early to understand the biological implications of that role, but these experimental data are intriguing in that this molecule could be contributing in some manner to the development of the disease itself."

Future laboratory studies may determine exactly how 2-AAA regulates function of the pancreatic cells and how and when the body makes this molecule. On the clinical side, researchers might study whether the administration of these metabolites to humans causes similar effects to those observed in animal models.

"The value of markers like these, which are metabolites, is that they can be given to people as nutritional supplements. These are amino acid derivatives that are byproducts of metabolism. Studies in humans can be done to see if there are similar patterns to what is seen experimentally," Wang said.

Type 2 diabetes is present in 5 to 10 percent of adults in the United States and is more prevalent among obese and overweight individuals, who comprise two-thirds of adults.

"Diabetes is common and the prevalence will only rise in coming years fueled by the rise of obesity. Understanding why diabetes occurs and how it might be prevented is a very intense area of investigation because of the serious consequences of having the disease," Wang said. "It is certainly a focus of many research groups to understand how we might develop strategies to detect diabetes risk at an earlier stage and intervene."

Kathy Whitney | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>