Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers have found how brain cells control their movement to form the cerebral cortex

28.02.2011
A study led by Academy Research Fellow Eleanor Coffey identifies new players that put the brakes on.

They show in mice that lack the star player "JNK1", that newborn neurons spend less time in the multipolar stage, which is when the cells prepare for subsequent expedition, possibly choosing the route to be taken.

Having hurried through this stage, they move off at high speed to reach their final destinations in the cortex days earlier and less precisely than in a normal mouse. The results of their study are published in the latest issue of Nature Neuroscience.

Incorrect placement of neurons during brain development may leave us at risk of diseases and conditions ranging from epilepsy and mental retardation to schizophrenia and dyslexia. When our brains develop, they do so at an impressive rate with up to 250,000 new cells produced every minute. These newborn neurons do not remain in place but instead migrate long distances in wave after wave to settle in the layers that make up the largest part of our brain, the cerebral cortex. If a neuron moves too fast during this journey, it may not take the correct route or reach its destination. The way neurons control their speed of migration has not been clear.

So how does JNK1 control movement of neurons in the developing cortex? Brain cells move as a consequence of positive and negative regulatory mechanisms. Coffey and her team identified a protein called SCG10 that cooperates with JNK1 to slow down the pace. We have known for years that SCG10 is abundant in the developing cortex and that it can bind to and control the brain cell skeleton or cytoskeleton. However no-one realised that its function is to regulate movement of neurons.

Coffey's results indicate that JNK1 and SCG10 cooperate to make the cytoskeleton more rigid. When cytoskeleton is stiff and inflexible, neurons stay longer in the multipolar stage and move slower, possibly because they are less able to squeeze through the cell layers generated earlier in development. How precisely is the cooperation between JNK1 and SCG10 accomplished? JNK1 is an enzyme which can add phosphate onto SCG10. Once SCG10 is modified in this way, it stabilizes the cytoskeleton.

Eleanor Coffey and her team, based at the Turku Centre for Biotechnology, joined forces with Michael Courtney at the A. I. Virtanen Institute in Kuopio and collaborators across Europe to carry out this study.

More information Academy Research Fellow Eleanor Coffey, tel. +358 2 333 8605, eleanor.coffey@btk.fi http://www.btk.fi/research/research-groups/coffey-eleanor-kinase-function-in-brain/

Link to the article: http://www.nature.com/neuro/journal/v14/n3/full/nn.2755.html

Academy of Finland Communications
Communications specialist Leena Vähäkylä
tel. +358 9 7748 8327
Leena.Vahakyla@aka.fi

Eleanor Coffey | EurekAlert!
Further information:
http://www.btk.fi

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>