Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers have found how brain cells control their movement to form the cerebral cortex

28.02.2011
A study led by Academy Research Fellow Eleanor Coffey identifies new players that put the brakes on.

They show in mice that lack the star player "JNK1", that newborn neurons spend less time in the multipolar stage, which is when the cells prepare for subsequent expedition, possibly choosing the route to be taken.

Having hurried through this stage, they move off at high speed to reach their final destinations in the cortex days earlier and less precisely than in a normal mouse. The results of their study are published in the latest issue of Nature Neuroscience.

Incorrect placement of neurons during brain development may leave us at risk of diseases and conditions ranging from epilepsy and mental retardation to schizophrenia and dyslexia. When our brains develop, they do so at an impressive rate with up to 250,000 new cells produced every minute. These newborn neurons do not remain in place but instead migrate long distances in wave after wave to settle in the layers that make up the largest part of our brain, the cerebral cortex. If a neuron moves too fast during this journey, it may not take the correct route or reach its destination. The way neurons control their speed of migration has not been clear.

So how does JNK1 control movement of neurons in the developing cortex? Brain cells move as a consequence of positive and negative regulatory mechanisms. Coffey and her team identified a protein called SCG10 that cooperates with JNK1 to slow down the pace. We have known for years that SCG10 is abundant in the developing cortex and that it can bind to and control the brain cell skeleton or cytoskeleton. However no-one realised that its function is to regulate movement of neurons.

Coffey's results indicate that JNK1 and SCG10 cooperate to make the cytoskeleton more rigid. When cytoskeleton is stiff and inflexible, neurons stay longer in the multipolar stage and move slower, possibly because they are less able to squeeze through the cell layers generated earlier in development. How precisely is the cooperation between JNK1 and SCG10 accomplished? JNK1 is an enzyme which can add phosphate onto SCG10. Once SCG10 is modified in this way, it stabilizes the cytoskeleton.

Eleanor Coffey and her team, based at the Turku Centre for Biotechnology, joined forces with Michael Courtney at the A. I. Virtanen Institute in Kuopio and collaborators across Europe to carry out this study.

More information Academy Research Fellow Eleanor Coffey, tel. +358 2 333 8605, eleanor.coffey@btk.fi http://www.btk.fi/research/research-groups/coffey-eleanor-kinase-function-in-brain/

Link to the article: http://www.nature.com/neuro/journal/v14/n3/full/nn.2755.html

Academy of Finland Communications
Communications specialist Leena Vähäkylä
tel. +358 9 7748 8327
Leena.Vahakyla@aka.fi

Eleanor Coffey | EurekAlert!
Further information:
http://www.btk.fi

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>