Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find pathway that drives spread of pediatric bone cancer in preclinical studies

26.10.2010
Researchers have identified an important signaling pathway that, when blocked, significantly decreases the spread of pediatric bone cancer.

In their study, researchers at The University of Texas MD Anderson Children's Cancer Hospital in Houston found that blocking the Notch pathway in mice decreased metastases in the lungs 15-fold. The results of a series of pre-clinical studies were reported Sunday in an oral presentation at the 42nd Congress of the International Society of Pediatric Oncology.

Their research showed that the Notch pathway and Hes1 gene play a key role in promoting the metastasis of osteosarcoma, the most common form of bone cancer in children.

Approximately 400 children and teens under the age of 20 are diagnosed with osteosarcoma annually, and the majority present with cancer that has already metastasized. The primary destination for the cancer to spread is to the lungs, which accounts for more than 35 percent of pediatric patients dying from osteosarcoma.

"Knowing the initial results from blocking Notch in mice, we are encouraged to keep investigating the entire metastasis process, so we can find additional therapies and targets to prevent cancer from spreading and growing," said Dennis Hughes, M.D., Ph.D., lead investigator and assistant professor at MD Anderson Children's Cancer Hospital.

In addition to Notch and Hes1's role in metastasis, Hughes believes that their expression can be correlated with a patient's prognosis. Hughes conducted a small retrospective study looking at patient samples, and 39 percent of patients with high expression levels of Hes1 survived 10 years versus the 60 percent survival rate for patients who had lower levels.

Ongoing research is studying the impact of various therapies, such as Gamma-secretase inhibitors and histone deacetylase (HDAC) inhibitors, that regulate the Notch pathway and have the potential to affect cancer cell survival. Hughes found that HDAC inhibitors actually increased the Notch pathway in osteosarcoma cells that had low Hes1 expression, which was an unfavorable response in that sample group. However, for cells that presented with high Hes1 expression, where Notch was already maximized, the HDAC inhibitors led to osteosarcoma cell death.

"By defining vital signaling pathways in bone sarcomas, we hope small molecule inhibitors can be applied, leading to longer survival and reducing morbidity and late effects from intensive chemotherapy," said Hughes.

"We also hope these new findings may apply to other solid tumors such as breast, prostate, colon and more, but we'll need additional research to determine whether or not that is the case," he added.

Primary funding for the studies was provided through the Physician-Scientist Program at MD Anderson along with additional support from the Jori Zemel Children's Bone Tumor Foundation, Hope Street Kids Foundation and Joan Alexander Fund. Other collaborators include Pingyu Zhang, Ph.D., Yanwen Yang, Daniela Katz, M.D., and Patrick Zweidler-McKay, M.D., Ph.D., from MD Anderson Cancer Center as well as Dafydd Thomas, M.D., Ph.D., from the University of Michigan Medical Center.

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For seven of the past nine years, including 2010, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

About MD Anderson Children's Cancer Hospital

The University of Texas MD Anderson Children's Cancer Hospital has been serving children, adolescents and young adults for more than 65 years. In addition to the groundbreaking research and quality of treatment available to pediatric patients, the nationally ranked Children's Cancer Hospital provides comprehensive programs that help children lead more normal lives during and after treatment. For further information, visit the Children's Cancer Hospital Web site at www.mdanderson.org/children

Sara Farris | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>