Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find mice cages alter brains

19.07.2010
Test results can be skewed

Researchers at the University of Colorado's Anschutz Medical Campus have found the brains of mice used in laboratories worldwide can be profoundly affected by the type of cage they are kept in, a breakthrough that may require scientists to reevaluate the way they conduct future experiments.

"We assume that mice used in laboratories are all the same, but they are not," said Diego Restrepo, director of the Neuroscience Program and professor of cell and developmental biology whose paper on the subject was published Tuesday, June 29. "When you change the cages you change the brains and that affects the outcomes of research."

Mice are the chief research mammals in the world today with some of the most promising cancer, genetic and neuroscience breakthroughs riding on the rodents. Researchers from different universities rely on careful comparison of experimental results for their discoveries; but Restrepo has found that some of these comparisons may not be trustworthy.

He discovered that the brains of mice are extremely sensitive to their environment and can physically change when moved from an enclosure where air circulates freely to one where it doesn't. Specifically, the portion of the mouse's brain responsible for its keen sense of smell, the olfactory bulb, is altered. Restrepo also found profound changes in the levels of aggression when mice are moved from one type of cage to another.

The results, he says, can greatly affect the accuracy of the research. Two labs doing the same experiments may get totally different results and never know why.

"This could explain some of the failures to replicate findings in different laboratories and why contradictory data are published by different laboratories even when genetically identical mice are used as subjects," said Restrepo.

The consequences could mean good science derailed or promising research abandoned simply due to the design of a mouse cage – something largely overlooked until now.

Restrepo's findings were just published in PLoS One, the Public Library of Science, a major peer-reviewed scientific journal, and are gaining and increasingly wide audience.

He hopes scientists will work to uncover the depth of the problem and find ways to overcome it.

"We need to ensure that laboratory findings are truly indicative of natural processes and not simply the result of environmental factors within each lab," he said.

David Kelly | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>