Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new insights into inherited retinal disease

18.01.2010
An international team of scientists, led by researchers at the University of California, San Diego School of Medicine have discovered new links between a common form of inherited blindness affecting children and a gene known as Abelson helper integration site-1 (AHI1).

Their findings, which may lead to new therapies and improved diagnostics for retinal disease, will appear online in advance of publication in the journal Nature Genetics on January 17.

A newly recognized class of disease known as "ciliopathies" has caught the attention of the medical community. Ciliopathies are caused by problems in the structure and/or function of cilia, which are small antenna-like structures protruding from the surface of most cells.

The function of cilia has not been understood, but patients with ciliopathies can suffer from a spectrum of problems including retinal blindness, obesity, renal failure, liver fibrosis and mental impairment. Major breakthroughs in the past few years have linked many forms of these diseases with defects in the structure or signaling capacity of the cilia in cells as diverse as retinal, fat, kidney, liver and nerve cells. Because cilia are so widely present on cells throughout the body, many seemingly unrelated diseases are now known to be related through functions of cilia.

"We are just beginning to uncover the genetic causes for these disorders, but more research is needed to understand why patients with these particular genetic alterations have such variable diseases," said Joseph G. Gleeson, MD, professor of neurosciences and pediatrics at UC San Diego and Howard Hughes Medical Institute Investigator, who supervised the work.

The scientists, led by Gleeson and UCSD graduate student Carrie M. Louie, discovered that loss of the AHI1 gene, which had already been found to cause Joubert Syndrome, a ciliopathy of mental retardation and impaired balance, also caused severe early onset retinal degeneration in the mouse model that they created. This model resembled the most common form of inherited blindness, which is due to degeneration of the retina at an early age.

Further investigation revealed that retinal photoreceptor cells in the mouse model were most likely dying as a result of a toxic accumulation of the very photopigment that receives light signals in the eye and is crucial for normal vision. This finding sheds light on one of the potential causes of retinal degeneration, protein mis-trafficking, which has been of fundamental interest in the study of inherited blindness, according to Gleeson.

The group then tested whether mutations in genes might contribute to retinal blindness in other related diseases. Their analysis of a group of European patients suggests that this is the case. The scientists found that patients carrying a particular genetic alteration were between five and ten times more likely to have retinal blindness, and that some forms of this blindness may be particularly amenable to gene therapy.

"These results may lead to better screening and future therapies for congenital blindness," said Louie. "As routine sequencing of the human genome becomes more and more feasible, studies like ours will help pinpoint which genetic alterations increase the risk of having a certain disease, or the likelihood that your children will have the disease."

Additional contributors to the study include Gianluca Caridi and Gian Marco Ghiggeri of the Giannina Gaslini Institute of Genoa, Italy; Vanda S. Lopes and David S. Williams of the Jules Stein Eye Institute, UCLA; Francesco Brancati and Enza Maria Valente of the CSS-Mendel Institute and G. d'Annunzio University, Italy; Andreas Kispert of the Institute for Molecular Biology, Hannover Medical School, Germany; Madeline Lancaster and Andrew Schlossman of UC San Diego; Edgar A. Otto, John F. O'Toole, and Friedhelm Hildebrandt of the University of Michigan; Michael Leitges of the Biotechnology Centre of Oslo, Norway; Hermann-Josef Groene of the German Cancer Research Center of Heidelberg, Germany; Irma Lopez and Robert K. Koenekoop of the McGill University Health Centre, Canada; Harini V. Gudiseva and Radha Ayyagari of UC San Diego; Elena Vallespin and Carmen Ayuso of the Fundación Jiménez Díaz, Spain, Frans P. Cremers and Anneke I den Hollander of the Radboud University Nijmegen, the Netherlands; and Bruno Dallapiccola of the Bambino Gesù Hospital, Italy.

This study was funded in part by the National Institutes of Health, the Burroughs Wellcome Fund, and the Howard Hughes Medical Institute.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>