Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new insights into inherited retinal disease

18.01.2010
An international team of scientists, led by researchers at the University of California, San Diego School of Medicine have discovered new links between a common form of inherited blindness affecting children and a gene known as Abelson helper integration site-1 (AHI1).

Their findings, which may lead to new therapies and improved diagnostics for retinal disease, will appear online in advance of publication in the journal Nature Genetics on January 17.

A newly recognized class of disease known as "ciliopathies" has caught the attention of the medical community. Ciliopathies are caused by problems in the structure and/or function of cilia, which are small antenna-like structures protruding from the surface of most cells.

The function of cilia has not been understood, but patients with ciliopathies can suffer from a spectrum of problems including retinal blindness, obesity, renal failure, liver fibrosis and mental impairment. Major breakthroughs in the past few years have linked many forms of these diseases with defects in the structure or signaling capacity of the cilia in cells as diverse as retinal, fat, kidney, liver and nerve cells. Because cilia are so widely present on cells throughout the body, many seemingly unrelated diseases are now known to be related through functions of cilia.

"We are just beginning to uncover the genetic causes for these disorders, but more research is needed to understand why patients with these particular genetic alterations have such variable diseases," said Joseph G. Gleeson, MD, professor of neurosciences and pediatrics at UC San Diego and Howard Hughes Medical Institute Investigator, who supervised the work.

The scientists, led by Gleeson and UCSD graduate student Carrie M. Louie, discovered that loss of the AHI1 gene, which had already been found to cause Joubert Syndrome, a ciliopathy of mental retardation and impaired balance, also caused severe early onset retinal degeneration in the mouse model that they created. This model resembled the most common form of inherited blindness, which is due to degeneration of the retina at an early age.

Further investigation revealed that retinal photoreceptor cells in the mouse model were most likely dying as a result of a toxic accumulation of the very photopigment that receives light signals in the eye and is crucial for normal vision. This finding sheds light on one of the potential causes of retinal degeneration, protein mis-trafficking, which has been of fundamental interest in the study of inherited blindness, according to Gleeson.

The group then tested whether mutations in genes might contribute to retinal blindness in other related diseases. Their analysis of a group of European patients suggests that this is the case. The scientists found that patients carrying a particular genetic alteration were between five and ten times more likely to have retinal blindness, and that some forms of this blindness may be particularly amenable to gene therapy.

"These results may lead to better screening and future therapies for congenital blindness," said Louie. "As routine sequencing of the human genome becomes more and more feasible, studies like ours will help pinpoint which genetic alterations increase the risk of having a certain disease, or the likelihood that your children will have the disease."

Additional contributors to the study include Gianluca Caridi and Gian Marco Ghiggeri of the Giannina Gaslini Institute of Genoa, Italy; Vanda S. Lopes and David S. Williams of the Jules Stein Eye Institute, UCLA; Francesco Brancati and Enza Maria Valente of the CSS-Mendel Institute and G. d'Annunzio University, Italy; Andreas Kispert of the Institute for Molecular Biology, Hannover Medical School, Germany; Madeline Lancaster and Andrew Schlossman of UC San Diego; Edgar A. Otto, John F. O'Toole, and Friedhelm Hildebrandt of the University of Michigan; Michael Leitges of the Biotechnology Centre of Oslo, Norway; Hermann-Josef Groene of the German Cancer Research Center of Heidelberg, Germany; Irma Lopez and Robert K. Koenekoop of the McGill University Health Centre, Canada; Harini V. Gudiseva and Radha Ayyagari of UC San Diego; Elena Vallespin and Carmen Ayuso of the Fundación Jiménez Díaz, Spain, Frans P. Cremers and Anneke I den Hollander of the Radboud University Nijmegen, the Netherlands; and Bruno Dallapiccola of the Bambino Gesù Hospital, Italy.

This study was funded in part by the National Institutes of Health, the Burroughs Wellcome Fund, and the Howard Hughes Medical Institute.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>