Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find that inhibiting microRNAs may help prevent degenerative eye disorders

07.06.2011
Blocking two tiny molecules of RNA – a chemical cousin of DNA – appears to suppress the abnormal growth of blood vessels that occurs in degenerative eye disorders, UT Southwestern Medical Center researchers have found.

Their findings, available in the Proceedings of the National Academy of Sciences, suggest a potential strategy to treat age-related macular degeneration (AMD), a vascular eye disorder that affects nearly 2 million Americans and is a leading cause of blindness among older people.

"MicroRNAs can affect multiple pathways involved in age-related macular degeneration," said Dr. Shusheng Wang, assistant professor of ophthalmology and pharmacology and co-senior author of the study. "Therapeutic manipulation of microRNAs 23 and 27 may give us a way to treat choroidal neovascularization in patients with degenerative retinal diseases."

In the study, researchers found that silencing the microRNA cluster members miR-23 and miR-27 hindered the excessive formation of blood vessels in the back of the eye, known as choroidal neovascularization. When these blood vessels hemorrhage and leak, it creates a sudden deterioration of central vision.

MicroRNAs are tiny pieces of genetic material that can target multiple components of signaling pathways. By interacting with other protein-making molecules in cells, they help fine-tune the expression of networks of genes and control cell function.

But microRNAs also can contribute to the excessive blood vessel formation that is responsible for vascular disorders, the current UT Southwestern study shows. That's because they stimulate the growth of new blood vessels from pre-existing vessels, a process called angiogenesis, which is an important natural process in the body used for healing and reproduction.

The body usually controls angiogenesis through a precise balance of growth and inhibitory factors in healthy tissues, Dr. Wang said. When the process becomes imbalanced, however, increased angiogenesis can lead to a variety of debilitating conditions.

Previous treatments for degenerative eye disorders have focused on inhibiting vascular endothelial growth factor (VEGF), a secreted protein that stimulates blood vessel formation. VEGF has been known to be a contributing factor in vascular disease in the retina of the eye.

Anti-VEGF drugs, which are injected into the eyeball, have been used to give patients some improvement in vision. These drugs, however, have limited effectiveness in treating some forms of neovascular AMD, and also have potential side effects.

Dr. Wang said further research may show that other microRNAs might also be involved, and that targeting multiple pathways may provide benefits in the treatment of these diseases.

"We want to see if a combination of microRNAs and angiogenetic drugs have a synergetic effect on the progression of macular degeneration," Dr. Wang said.

Dr. Eric Olson, chairman of molecular biology, was the study's other co-senior author. Other UT Southwestern researchers involved were Dr. Rafael Ufret-Vincenty, assistant professor of ophthalmology, Dr. Qinbo Zhou, postdoctoral fellow and lead author; Rachel Gallagher, research technician; and Dr. Xinyu Li, a visiting professor.

The study was supported by a startup fund from the Department of Ophthalmology and grants from the National Institutes of Health and from the Research to Prevent Blindness Foundation.

Visit http://www.utsouthwestern.org/ophth to learn more about UT Southwestern's clinical services in ophthalmology.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Robin Russell | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>