Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find that inhibiting microRNAs may help prevent degenerative eye disorders

Blocking two tiny molecules of RNA – a chemical cousin of DNA – appears to suppress the abnormal growth of blood vessels that occurs in degenerative eye disorders, UT Southwestern Medical Center researchers have found.

Their findings, available in the Proceedings of the National Academy of Sciences, suggest a potential strategy to treat age-related macular degeneration (AMD), a vascular eye disorder that affects nearly 2 million Americans and is a leading cause of blindness among older people.

"MicroRNAs can affect multiple pathways involved in age-related macular degeneration," said Dr. Shusheng Wang, assistant professor of ophthalmology and pharmacology and co-senior author of the study. "Therapeutic manipulation of microRNAs 23 and 27 may give us a way to treat choroidal neovascularization in patients with degenerative retinal diseases."

In the study, researchers found that silencing the microRNA cluster members miR-23 and miR-27 hindered the excessive formation of blood vessels in the back of the eye, known as choroidal neovascularization. When these blood vessels hemorrhage and leak, it creates a sudden deterioration of central vision.

MicroRNAs are tiny pieces of genetic material that can target multiple components of signaling pathways. By interacting with other protein-making molecules in cells, they help fine-tune the expression of networks of genes and control cell function.

But microRNAs also can contribute to the excessive blood vessel formation that is responsible for vascular disorders, the current UT Southwestern study shows. That's because they stimulate the growth of new blood vessels from pre-existing vessels, a process called angiogenesis, which is an important natural process in the body used for healing and reproduction.

The body usually controls angiogenesis through a precise balance of growth and inhibitory factors in healthy tissues, Dr. Wang said. When the process becomes imbalanced, however, increased angiogenesis can lead to a variety of debilitating conditions.

Previous treatments for degenerative eye disorders have focused on inhibiting vascular endothelial growth factor (VEGF), a secreted protein that stimulates blood vessel formation. VEGF has been known to be a contributing factor in vascular disease in the retina of the eye.

Anti-VEGF drugs, which are injected into the eyeball, have been used to give patients some improvement in vision. These drugs, however, have limited effectiveness in treating some forms of neovascular AMD, and also have potential side effects.

Dr. Wang said further research may show that other microRNAs might also be involved, and that targeting multiple pathways may provide benefits in the treatment of these diseases.

"We want to see if a combination of microRNAs and angiogenetic drugs have a synergetic effect on the progression of macular degeneration," Dr. Wang said.

Dr. Eric Olson, chairman of molecular biology, was the study's other co-senior author. Other UT Southwestern researchers involved were Dr. Rafael Ufret-Vincenty, assistant professor of ophthalmology, Dr. Qinbo Zhou, postdoctoral fellow and lead author; Rachel Gallagher, research technician; and Dr. Xinyu Li, a visiting professor.

The study was supported by a startup fund from the Department of Ophthalmology and grants from the National Institutes of Health and from the Research to Prevent Blindness Foundation.

Visit to learn more about UT Southwestern's clinical services in ophthalmology.

This news release is available on our World Wide Web home page at

To automatically receive news releases from UT Southwestern via email, subscribe at

Robin Russell | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>