Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find how brain hears the sound of silence

11.02.2010
University of Oregon team discovers that separate brain pathways process the start and end of what we hear

A team of University of Oregon researchers have isolated an independent processing channel of synapses inside the brain's auditory cortex that deals specifically with shutting off sound processing at appropriate times. Such regulation is vital for hearing and for understanding speech.

The discovery, detailed in the Feb. 11 issue of the journal Neuron, goes against a long-held assumption that the signaling of a sound's appearance and its subsequent disappearance are both handled by the same pathway. The new finding, which supports an emerging theory that a separate set of synapses is responsible, could lead to new, distinctly targeted therapies such as improved hearing devices, said Michael Wehr, a professor of psychology and member of the UO Institute of Neuroscience.

"It looks like there is a whole separate channel that goes all the way from the ear up to the brain that is specialized to process sound offsets," Wehr said. The two channels finally come together in a brain region called the auditory cortex, situated in the temporal lobe.

To do the research, Wehr and two UO undergraduate students -- lead author Ben Scholl, now a graduate student at the Oregon Health and Science University in Portland, and Xiang Gao -- monitored the activity of neurons and their connecting synapses as rats were exposed to millisecond bursts of tones, looking at the responses to both the start and end of a sound. They tested varying lengths and frequencies of sounds in a series of experiments.

It became clear, the researchers found, that one set of synapses responded "very strongly at the onset of sounds," but a different set of synapses responded to the sudden disappearance of sounds. There was no overlap of the two responding sets, the researchers noted. The end of one sound did not affect the response to a new sound, thus reinforcing the idea of separate processing channels.

The UO team also noted that responses to the end of a sound involved different frequency tuning, duration and amplitude than those involved in processing the start of a sound, findings that agree with a trend cited in at least three other studies in the last decade.

"Being able to perceive when sound stops is very important for speech processing," Wehr said. "One of the really hard problems in speech is finding the boundaries between the different parts of words. It is really not well understood how the brain does that."

As an example, he noted the difficulty some people have when they are at a noisy cocktail party and are trying to follow one conversation amid competing background noises. "We think that we've discovered brain mechanisms that are important in finding the necessary boundaries between words that help to allow for successful speech recognition and hearing," he said.

The research -- funded in part by the UO's Robert and Beverly Lewis Center for Neuroimaging Fund -- aims to provide a general understanding of how areas of the brain function. The new findings, Wehr said, could also prove useful in working with children who have deficits in speech and learning, as well as in the design of hearing aids and cochlear implants. He also noted that people with dyslexia have problems defining the boundaries of sounds in speech, and tapping these processing areas in therapy could boost reading skills.

About the University of Oregon

The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 62 leading public and private research institutions in the United States and Canada. The UO is one of only two AAU members in the Pacific Northwest.

Source: Michael Wehr, assistant professor of psychology, 541- 346-5866, wehr@uoregon.edu

Links:

Wehr faculty page: http://psychweb.uoregon.edu/people/wehr-michael
Wehr lab: http://www.neuro.uoregon.edu/wehr/index.html
UO psychology department: http://psychweb.uoregon.edu/
Institute of Neuroscience: http://www.neuro.uoregon.edu/

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>