Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find how brain hears the sound of silence

11.02.2010
University of Oregon team discovers that separate brain pathways process the start and end of what we hear

A team of University of Oregon researchers have isolated an independent processing channel of synapses inside the brain's auditory cortex that deals specifically with shutting off sound processing at appropriate times. Such regulation is vital for hearing and for understanding speech.

The discovery, detailed in the Feb. 11 issue of the journal Neuron, goes against a long-held assumption that the signaling of a sound's appearance and its subsequent disappearance are both handled by the same pathway. The new finding, which supports an emerging theory that a separate set of synapses is responsible, could lead to new, distinctly targeted therapies such as improved hearing devices, said Michael Wehr, a professor of psychology and member of the UO Institute of Neuroscience.

"It looks like there is a whole separate channel that goes all the way from the ear up to the brain that is specialized to process sound offsets," Wehr said. The two channels finally come together in a brain region called the auditory cortex, situated in the temporal lobe.

To do the research, Wehr and two UO undergraduate students -- lead author Ben Scholl, now a graduate student at the Oregon Health and Science University in Portland, and Xiang Gao -- monitored the activity of neurons and their connecting synapses as rats were exposed to millisecond bursts of tones, looking at the responses to both the start and end of a sound. They tested varying lengths and frequencies of sounds in a series of experiments.

It became clear, the researchers found, that one set of synapses responded "very strongly at the onset of sounds," but a different set of synapses responded to the sudden disappearance of sounds. There was no overlap of the two responding sets, the researchers noted. The end of one sound did not affect the response to a new sound, thus reinforcing the idea of separate processing channels.

The UO team also noted that responses to the end of a sound involved different frequency tuning, duration and amplitude than those involved in processing the start of a sound, findings that agree with a trend cited in at least three other studies in the last decade.

"Being able to perceive when sound stops is very important for speech processing," Wehr said. "One of the really hard problems in speech is finding the boundaries between the different parts of words. It is really not well understood how the brain does that."

As an example, he noted the difficulty some people have when they are at a noisy cocktail party and are trying to follow one conversation amid competing background noises. "We think that we've discovered brain mechanisms that are important in finding the necessary boundaries between words that help to allow for successful speech recognition and hearing," he said.

The research -- funded in part by the UO's Robert and Beverly Lewis Center for Neuroimaging Fund -- aims to provide a general understanding of how areas of the brain function. The new findings, Wehr said, could also prove useful in working with children who have deficits in speech and learning, as well as in the design of hearing aids and cochlear implants. He also noted that people with dyslexia have problems defining the boundaries of sounds in speech, and tapping these processing areas in therapy could boost reading skills.

About the University of Oregon

The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 62 leading public and private research institutions in the United States and Canada. The UO is one of only two AAU members in the Pacific Northwest.

Source: Michael Wehr, assistant professor of psychology, 541- 346-5866, wehr@uoregon.edu

Links:

Wehr faculty page: http://psychweb.uoregon.edu/people/wehr-michael
Wehr lab: http://www.neuro.uoregon.edu/wehr/index.html
UO psychology department: http://psychweb.uoregon.edu/
Institute of Neuroscience: http://www.neuro.uoregon.edu/

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>