Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a better way to track stem cells

06.04.2010
A study published in the current issue of Cell Transplantation (19:1) has found that using the FDA-approved contrast agent Indocyanine Green (ICG) to label human embryonic stem cell-derived cardiomyocytes (hESC-CMs) substantially improved efforts to optically track stem cells after transplanting them into heart tissues.

The study, carried out by the Departments of Radiology at the University of California and the Technical University of Munich, is freely available on-line at http://www.ingentaconnect.com/content/cog/ct ).

"We found that hESC-CMs labeled with ICG show a significant fluorescence up to 48 hours and can be visualized with optical imaging," said study lead author Dr. Sophie E. Boddington of the UCSF Department of Radiology. "Once more, the labeling procedure did not impair the viability or functional integrity of the cells."

According to the researchers, finding an efficient stem cell delivery technique has been a challenge. Too often, stem cells aimed at myocardial regeneration are "washed away" into noncardiac tissues or they soon die. A 10 percent survival rate for hESC-CMs has been common. Researchers knew that a better way to visualize the transplanted stem cells was needed to help direct and order stem cell delivery, and they also knew that materials used to label the cells had to be maximally fluorescent but not detrimental to the viability of the cells.

"We found the ICG-labeling technique advantageous because it is cost effective, straightforward and rapid," concluded Dr. Boddington. "Its most noticeable advantage is that it can be used with iron oxide-based nanoparticles for use with MRIs, as it increases single cell sensitivity. This is important because of the unpredictable migrational dynamics of the cells."

The researchers added that although PET techniques are more single cell sensitive than MRI, PET introduces radiation exposure and associated risks. In addition to not involving ionized radiation, optical imaging, using the MRI is quicker, less expensive, easier to perform, and noninvasive. Once more, ICG marking is already FDA-approved and accessible.

An added benefit, said Dr. Boddington, is that ICG is rapidly excreted, which suggests safe elimination.

While the ability of hESCs to regenerate into cells of almost all human tissues has been documented, and this provides a promising therapeutic source for myocardial regeneration after cardiac ischema, few studies have actually demonstrated this potential. Visualizing transplanted stem cells could, however, benefit cell retention and improve cell functional outcomes.

"Our data suggests that hESCs labeled with ICG may be useful in assessing delivery routes to improve the engraftment of transplanted hESC-CMs or other stem cell progenitors," concluded Dr. Boddington.

The study has significance, said Dr. Dwaine Emerich, section editor for Cell Transplantation.

"These studies are an important step forward in the quest for techniques to label and visualize stem cells in vivo," said Dr. Emerich. "The ICG-labeling technique described by Boddington and colleagues provides several advantages including its straight forward simplicity, reliability, and the fact that the technique can be easily combined with other developing imaging technologies."

Contact: Dr. Sophie E. Boddington, Department of Radiology, University of California, San Francisco, 185 Berry St. Suite 350, San Francisco, California 94107-0946. Tel. 415-353-4854 Fax 415-353-9425 Email: Sophie.Boddington@radiology.ucsf.edu

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, ScienceScribe.Net

David Eve | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>