Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find a better way to track stem cells

06.04.2010
A study published in the current issue of Cell Transplantation (19:1) has found that using the FDA-approved contrast agent Indocyanine Green (ICG) to label human embryonic stem cell-derived cardiomyocytes (hESC-CMs) substantially improved efforts to optically track stem cells after transplanting them into heart tissues.

The study, carried out by the Departments of Radiology at the University of California and the Technical University of Munich, is freely available on-line at http://www.ingentaconnect.com/content/cog/ct ).

"We found that hESC-CMs labeled with ICG show a significant fluorescence up to 48 hours and can be visualized with optical imaging," said study lead author Dr. Sophie E. Boddington of the UCSF Department of Radiology. "Once more, the labeling procedure did not impair the viability or functional integrity of the cells."

According to the researchers, finding an efficient stem cell delivery technique has been a challenge. Too often, stem cells aimed at myocardial regeneration are "washed away" into noncardiac tissues or they soon die. A 10 percent survival rate for hESC-CMs has been common. Researchers knew that a better way to visualize the transplanted stem cells was needed to help direct and order stem cell delivery, and they also knew that materials used to label the cells had to be maximally fluorescent but not detrimental to the viability of the cells.

"We found the ICG-labeling technique advantageous because it is cost effective, straightforward and rapid," concluded Dr. Boddington. "Its most noticeable advantage is that it can be used with iron oxide-based nanoparticles for use with MRIs, as it increases single cell sensitivity. This is important because of the unpredictable migrational dynamics of the cells."

The researchers added that although PET techniques are more single cell sensitive than MRI, PET introduces radiation exposure and associated risks. In addition to not involving ionized radiation, optical imaging, using the MRI is quicker, less expensive, easier to perform, and noninvasive. Once more, ICG marking is already FDA-approved and accessible.

An added benefit, said Dr. Boddington, is that ICG is rapidly excreted, which suggests safe elimination.

While the ability of hESCs to regenerate into cells of almost all human tissues has been documented, and this provides a promising therapeutic source for myocardial regeneration after cardiac ischema, few studies have actually demonstrated this potential. Visualizing transplanted stem cells could, however, benefit cell retention and improve cell functional outcomes.

"Our data suggests that hESCs labeled with ICG may be useful in assessing delivery routes to improve the engraftment of transplanted hESC-CMs or other stem cell progenitors," concluded Dr. Boddington.

The study has significance, said Dr. Dwaine Emerich, section editor for Cell Transplantation.

"These studies are an important step forward in the quest for techniques to label and visualize stem cells in vivo," said Dr. Emerich. "The ICG-labeling technique described by Boddington and colleagues provides several advantages including its straight forward simplicity, reliability, and the fact that the technique can be easily combined with other developing imaging technologies."

Contact: Dr. Sophie E. Boddington, Department of Radiology, University of California, San Francisco, 185 Berry St. Suite 350, San Francisco, California 94107-0946. Tel. 415-353-4854 Fax 415-353-9425 Email: Sophie.Boddington@radiology.ucsf.edu

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, ScienceScribe.Net

David Eve | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>