Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Explain How Leptin Regulates Energy Metabolism and Bone Mass

07.09.2009
New research from Columbia University Medical Center has illuminated a previously unknown leptin-serotonin pathway in the brain that simultaneously promotes appetite and bone mass accrual. The research, which explains how leptin – well-known appetite-suppressing hormone – acts in the brain, is published in the Sept. 4 issue of Cell.

When the leptin-serotonin pathway is turned on in mice, the researchers found, appetite increases, the animals eat more, gain weight, and their bone mass increases. When the pathway is turned off, mice eat less, lose weight, and their bones weaken.

Furthermore, leptin was found to not act in the hypothalamus as previously thought, but in the brain stem acting on serotonin, a hormone that in the brain acts to control appetite, mood and anger.

The identification of this pathway helps explain why, as doctors have long known, obese people tend to have a significantly lower prevalence of osteoporosis, says the study’s senior author, Gerard Karsenty, M.D., Ph.D., chair of the Department of Genetics & Development at Columbia University’s College of Physician and Surgeons. Though obese people produce high levels of leptin, they are resistant, or unresponsive, to its signals – instead, they operate in a false state of leptin deficiency, which increases serotonin – and thereby, appetite and bone mass. Dr. Karsenty points out that these current findings may have more influence on developing a new way to reduce appetite and obesity than preventing osteoporosis.

“It will be difficult to turn on the pathway to strengthen bone without increasing appetite at the same time,” Dr. Karsenty said. “But this finding shows that it is feasible to alter parts of the leptin-serotonin pathway to decrease appetite without weakening bone.”

HORMONE LEPTIN SUPRESSES BONE FORMATION BY SHUTTING OFF SEROTONIN

Dr. Karsenty and his colleagues discovered this pathway after first noticing the powerful effect of leptin – known for suppressing appetite – on bone mass accrual. Dr. Karsenty previously discovered that leptin is the most powerful inhibitor of bone formation in the body. This new study reveals that high levels of leptin suppress bone formation by shutting off the synthesis of serotonin in certain neurons in the brainstem.

Dr. Karsenty and his colleagues were surprised to observe that increased serotonin in the brainstem also increased appetite in mice. “We previously thought that leptin’s modes of action on appetite and bone mass accrual were distinct,” Dr. Karsenty said. “But we found instead that they behave more like twins – taking the same pathway through the brainstem. This correlates strikingly with the fact that leptin appears during evolution of bone cells when bone is first formed in the body.”

Dr. Karsenty’s team found that the appetite and bone pathways diverge once serotonin is released: one set of serotonin receptors turns on appetite, while a second increases bone mass accrual.

The findings may open the door for weight loss drugs that have no side effects on bone density.

“Theoretically, one can imagine that a drug that blocks only the appetite receptors, but not the bone receptors, could help people lose weight without losing bone mass,” Dr. Karsenty said.

Dr. Karsenty explained the surprising link between appetite and the skeleton by noting that the pathway monitors the amount of energy available to maintain bone.

“Our bones are constantly broken down and rebuilt during our lifetimes, and those renovations require an enormous and daily supply of energy,” he said.

DISCOVERY CLARIFIES PREVIOUS RESEARCH; ADDS TO WORK ON BONE

In November 2008, Dr. Karsenty published a paper in Cell, which describes how serotonin released from the gut controls bone formation. Unlike the brain’s serotonin, an increase in gut serotonin impairs bone formation. (A press release about the Nov. 2008 finding is available at: http://www.cumc.columbia.edu/news/press_releases/Karsenty-cell-serotonin-lrp5.html.)

Dr. Karsenty’s new research shows that while both derivations of serotonin influence bone mass, the brain’s serotonin dominates the effect of serotonin from the gut.

LEPTIN-SEROTONIN PATHWAY MAY ALSO EXPLAIN OSTEOPOROSIS/ANTI-DEPRESSANT LINK

In some studies, selective serotonin reuptake inhibitors (SSRIs), which are commonly used to treat depression, have been associated with osteoporosis in some patients.

SSRIs enhance the action of serotonin, and depending on the person, that may lead to weakened, or strengthened bones, says study co-author J. John Mann, M.D., Ph.D., professor of translational neuroscience (in psychiatry and in radiology) and vice chair for Research in the Department of Psychiatry at Columbia University Medical Center and the New York State Psychiatric Institute.

“SSRIs work in the brain and in the gut, but in some people they may work more strongly in the gut,” Dr. Mann said. “In that case, SSRIs could lead to a decrease in bone growth and osteoporosis.”

The hope is that these research findings will help explain this phenomena and lead to potential treatment for this side effect.

Columbia University Medical Center provides international leadership in basic, pre-clinical and clinical research, in medical and health sciences education, and in patient care. The medical center trains future health care leaders at the College of Physicians & Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Established in 1767, Columbia’s College of Physicians & Surgeons was the first in the country to grant the M.D. degree. Columbia University Medical Center is home to the largest medical research enterprise in New York City and state and one of the largest in the United States.

| Newswise Science News
Further information:
http://www.cumc.columbia.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>