Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Engineer New Methane-Production Pathway in Microorganism

09.12.2010
Research opens door to possible conversion of biomass to natural gas

A University of Arkansas researcher and his colleagues have created the first methane-producing microorganism that can metabolize complex carbon structures, which could lead to microbial recycling of waste products and their transformation into natural gas.

Daniel J. Lessner, assistant professor of biological sciences, and his colleagues Lexhan Lhu, Christopher S. Wahal and James G. Ferry of Pennsylvania State University, published their findings in mBio. Lessner conducted the research as a postdoctoral associate at Penn State.

While methane gas is considered to be a greenhouse gas, it also is an important biofuel, used to power businesses and homes. Finding ways to produce methane gas efficiently therefore interests individuals and industries alike.

Lessner and his colleagues worked with methanogens, methane-producing anaerobic microorganisms from the domain archaea that are thought to date back further in time than any other life form.

“Methanogens are the only organisms that produce methane biologically, but they are limited in what they can use to produce methane,” said Lessner. In nature, a consortium of anaerobic microorganisms break down carbon-rich items, such as leaves in a pond, into simple molecules consisting of one or two carbon atoms, which methanogens then consume, producing methane in the process. Because this process involves multiple species, it can be easily disrupted, and would not be an efficient way to mass-produce methane gas.

Lessner and his colleagues decided to introduce a gene into a methanogen that would allow it to break down more complex molecules for its own consumption. To do this, they introduced a gene into the DNA of the methanogen Methanosarcina acetivorans that expresses an enzyme that breaks down esters, which are found in nature and also solvents used in paints and paint thinners.

After introducing the enzyme into the methanogen, the researchers demonstrated that M. acetivorans grew, consumed almost all of the esters, and produced methane from them.

“This establishes a platform to begin engineering these organisms to consume different substrates,” Lessner said. This engineered pathway expands the narrow range of substrates used by methanogens, which may lead to more efficient conversion of biomass to methane gas. While esters might not work at an industrial scale, it might be possible to engineer a methanogen that can break down glycerol, a waste product from biodiesel fuel, and have it produce methane.

CONTACTS:
Daniel J. Lessner, assistant professor, biological sciences
J. William Fulbright College of Arts and Sciences
479-575-2239, lessner@uark.edu
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>