Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new weapon in fight against cervical cancer

31.05.2013
Scientists at the University of Leeds have found a way to target and destroy a key protein associated with the development of cervical and other cancers.

The E7 protein is produced early in the lifecycle of the human papillomavirus (HPV) and blocks the body's natural defences against the uncontrolled division of cells that can lead to cancer.

Researchers at the University of Leeds' School of Molecular and Cellular Biology have synthesised a molecule, called an RNA aptamer, that latches onto the carcinogenic protein and targets it for destruction, significantly reducing its presence in cells in the laboratory derived from cervical cancers.

There are many types of human papillomavirus. Some are transmitted by sexual contact and associated not only with cervical cancer but also head and neck cancer. Although an increasing proportion of young women in the United Kingdom are vaccinated against the virus, most women in their mid-20s or older are not vaccinated and many may already be HPV positive.

"We therefore need to maintain screening and to develop novel therapeutic strategies," lead researcher Dr Nicola Stonehouse said. "Currently, if you have advanced cervical cancer or head and neck cancer—both of which are associated with human papillomavirus—you really have little choice but surgery. If we can use this aptamer to target the carcinogenic protein, we might be talking about much less radical surgery in the future."

Aptamers are a relatively new tool for molecular biologists and a topic of intense research interest. Like the much better understood antibodies, aptamers can identify and target other molecules as well as viruses and bacteria. However, unlike traditional antibodies, they offer the possibility of insertion into live cells and can be artificially designed in the test tube.

The Leeds team, which received funding from Yorkshire Cancer Research and the BBSRC, was originally looking for an aptamer for use as a research tool.

"We were not trying to develop a therapy. We wanted to create better ways of looking at the virus infection because the current tools that we have are very limited," Dr Stonehouse said. "But what we found was that the aptamers caused the E7 protein to actually disappear. They seem to target it to be degraded. In a cell which is producing lots of E7 and is therefore dangerous, the level of E7 goes down if these RNA aptamers are there".

The new study is based on laboratory cell lines rather than real cancer cases, but the discovery of a molecule that targets one of the key proteins involved in HPV-related cancers raises the possibility of less invasive treatments.

The new aptamer might be used in the future to help stop residual cancerous material from re-establishing itself after surgery and therefore allow less aggressive approaches to surgery. The next challenge is to effectively target the new aptamer at real cancers.

The paper is published in the journal PLOS One.

Further information:

Dr Nicola Stonehouse is available for interview. Contact: Chris Bunting, Press Officer, University of Leeds; phone: +44 113 343 2049 or email c.j.bunting@leeds.ac.uk

The full paper: Clare Nicol, Özlem Cesur, Sophie Forrest, Tamara Belyaeva, David Bunka, G. Eric Blair, Nicola Stonehouse, 'An RNA aptamer provides a novel approach for the induction of apoptosis by targeting the HPV16 E7 oncoprotein,' PLOS ONE (2013) (DOI: 10.1371/journal.pone.0064781; URL: http://dx.plos.org/10.1371/journal.pone.0064781)

Chris Bunting | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>