Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover new weapon in fight against cervical cancer

Scientists at the University of Leeds have found a way to target and destroy a key protein associated with the development of cervical and other cancers.

The E7 protein is produced early in the lifecycle of the human papillomavirus (HPV) and blocks the body's natural defences against the uncontrolled division of cells that can lead to cancer.

Researchers at the University of Leeds' School of Molecular and Cellular Biology have synthesised a molecule, called an RNA aptamer, that latches onto the carcinogenic protein and targets it for destruction, significantly reducing its presence in cells in the laboratory derived from cervical cancers.

There are many types of human papillomavirus. Some are transmitted by sexual contact and associated not only with cervical cancer but also head and neck cancer. Although an increasing proportion of young women in the United Kingdom are vaccinated against the virus, most women in their mid-20s or older are not vaccinated and many may already be HPV positive.

"We therefore need to maintain screening and to develop novel therapeutic strategies," lead researcher Dr Nicola Stonehouse said. "Currently, if you have advanced cervical cancer or head and neck cancer—both of which are associated with human papillomavirus—you really have little choice but surgery. If we can use this aptamer to target the carcinogenic protein, we might be talking about much less radical surgery in the future."

Aptamers are a relatively new tool for molecular biologists and a topic of intense research interest. Like the much better understood antibodies, aptamers can identify and target other molecules as well as viruses and bacteria. However, unlike traditional antibodies, they offer the possibility of insertion into live cells and can be artificially designed in the test tube.

The Leeds team, which received funding from Yorkshire Cancer Research and the BBSRC, was originally looking for an aptamer for use as a research tool.

"We were not trying to develop a therapy. We wanted to create better ways of looking at the virus infection because the current tools that we have are very limited," Dr Stonehouse said. "But what we found was that the aptamers caused the E7 protein to actually disappear. They seem to target it to be degraded. In a cell which is producing lots of E7 and is therefore dangerous, the level of E7 goes down if these RNA aptamers are there".

The new study is based on laboratory cell lines rather than real cancer cases, but the discovery of a molecule that targets one of the key proteins involved in HPV-related cancers raises the possibility of less invasive treatments.

The new aptamer might be used in the future to help stop residual cancerous material from re-establishing itself after surgery and therefore allow less aggressive approaches to surgery. The next challenge is to effectively target the new aptamer at real cancers.

The paper is published in the journal PLOS One.

Further information:

Dr Nicola Stonehouse is available for interview. Contact: Chris Bunting, Press Officer, University of Leeds; phone: +44 113 343 2049 or email

The full paper: Clare Nicol, Özlem Cesur, Sophie Forrest, Tamara Belyaeva, David Bunka, G. Eric Blair, Nicola Stonehouse, 'An RNA aptamer provides a novel approach for the induction of apoptosis by targeting the HPV16 E7 oncoprotein,' PLOS ONE (2013) (DOI: 10.1371/journal.pone.0064781; URL:

Chris Bunting | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>