Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new weapon in fight against cervical cancer

31.05.2013
Scientists at the University of Leeds have found a way to target and destroy a key protein associated with the development of cervical and other cancers.

The E7 protein is produced early in the lifecycle of the human papillomavirus (HPV) and blocks the body's natural defences against the uncontrolled division of cells that can lead to cancer.

Researchers at the University of Leeds' School of Molecular and Cellular Biology have synthesised a molecule, called an RNA aptamer, that latches onto the carcinogenic protein and targets it for destruction, significantly reducing its presence in cells in the laboratory derived from cervical cancers.

There are many types of human papillomavirus. Some are transmitted by sexual contact and associated not only with cervical cancer but also head and neck cancer. Although an increasing proportion of young women in the United Kingdom are vaccinated against the virus, most women in their mid-20s or older are not vaccinated and many may already be HPV positive.

"We therefore need to maintain screening and to develop novel therapeutic strategies," lead researcher Dr Nicola Stonehouse said. "Currently, if you have advanced cervical cancer or head and neck cancer—both of which are associated with human papillomavirus—you really have little choice but surgery. If we can use this aptamer to target the carcinogenic protein, we might be talking about much less radical surgery in the future."

Aptamers are a relatively new tool for molecular biologists and a topic of intense research interest. Like the much better understood antibodies, aptamers can identify and target other molecules as well as viruses and bacteria. However, unlike traditional antibodies, they offer the possibility of insertion into live cells and can be artificially designed in the test tube.

The Leeds team, which received funding from Yorkshire Cancer Research and the BBSRC, was originally looking for an aptamer for use as a research tool.

"We were not trying to develop a therapy. We wanted to create better ways of looking at the virus infection because the current tools that we have are very limited," Dr Stonehouse said. "But what we found was that the aptamers caused the E7 protein to actually disappear. They seem to target it to be degraded. In a cell which is producing lots of E7 and is therefore dangerous, the level of E7 goes down if these RNA aptamers are there".

The new study is based on laboratory cell lines rather than real cancer cases, but the discovery of a molecule that targets one of the key proteins involved in HPV-related cancers raises the possibility of less invasive treatments.

The new aptamer might be used in the future to help stop residual cancerous material from re-establishing itself after surgery and therefore allow less aggressive approaches to surgery. The next challenge is to effectively target the new aptamer at real cancers.

The paper is published in the journal PLOS One.

Further information:

Dr Nicola Stonehouse is available for interview. Contact: Chris Bunting, Press Officer, University of Leeds; phone: +44 113 343 2049 or email c.j.bunting@leeds.ac.uk

The full paper: Clare Nicol, Özlem Cesur, Sophie Forrest, Tamara Belyaeva, David Bunka, G. Eric Blair, Nicola Stonehouse, 'An RNA aptamer provides a novel approach for the induction of apoptosis by targeting the HPV16 E7 oncoprotein,' PLOS ONE (2013) (DOI: 10.1371/journal.pone.0064781; URL: http://dx.plos.org/10.1371/journal.pone.0064781)

Chris Bunting | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>