Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New Method of Making Nanoparticles

07.03.2012
An engineering researcher at the University of Arkansas and his colleagues at the University of Utah have discovered a new method of making nanoparticles and nanofilms to be used in developing better electronic devices, biosensors and certain types of high-powered and highly specific microscopes used for scientific research.

The never-ending quest to build faster, more efficient and more reliable electronic devices starts deep down below the molecular level, where nanoparticles – far too small for the human eye to detect – make up the building blocks of the latest processing hardware. In pursuit of this goal, scientists and engineers are constantly investigating new materials and better methods of developing or assembling these materials.

The researchers’ nanoparticles, made of gold and deposited onto silicon substrates by a unique chemical process, are nontoxic and inexpensive to make and have superior dimensions, densities and distribution when compared to other nanoparticles and conventional methods of producing nanoparticles. The unique deposition technique has the further advantage of being able to rapidly coat fragile, three-dimensional and internal surfaces at the temperature and pressure of its surroundings without requiring conductive substrates or expensive, sophisticated equipment.

“Using successive thermal treatments, we characterized optical and structural features of an inexpensive, molecule-to-molecule, bottoms-up approach to create thermally stable, gold-nanoparticle ensembles on silica,” said Keith Roper, associate professor of chemical engineering at the University of Arkansas. “Images and analysis from scanning electron microscopy and atomic force microscopy revealed that particle densities are the highest reported to date. Our method also allows faster preparation than self-assembly or lithography and allows directed assembly of nanoparticle ensembles on 3D surfaces.”

The researchers’ unique approach improves upon a method that involves depositing atoms from a solution onto a substrate with a tin-sensitized surface. The researchers use a novel continuous-deposition process and then heat these deposited atoms to transform “islands” of nanoparticle material into desired forms. The resulting spherical nanoparticles can have diameters between 5 and about 300 nanometers. A nanometer is a billionth of a meter. A human hair typically has a diameter of 70,000 nanometers.

Roper said that microscopic images and spectroscopic data suggest that ultrathin films prepared by their new approach are smoother than conventional “sputtered” or evaporated gold films and may exhibit better optical features, such as reduced surface-roughness scattering. These features are desirable in devices such as photovoltaic cells in which narrow metal layers significantly affect local electromagnetic fields. Smoother thin films also could improve the limits of detection, sensitivity and photocurrent, respectively, in such applications.

The researchers’ recent studies in this area have been published in Langmuir and Journal of Physical Chemistry C, journals of the American Chemical Society. The researchers were awarded U.S. Patent No. 8,097,295 on Jan. 17 for the development.

Roper is holder of the Charles W. Oxford Professorship of Emerging Technologies. He is also assistant director of the graduate program in microelectronics/photonics.

CONTACTS:
D. Keith Roper, associate professor, chemical engineering
College of Engineering
479-575-6691, dkroper@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>