Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover mechanism that helps humans see in bright and low light

Ever wonder how your eyes adjust during a blackout? When we go from light to near total darkness, cells in the retina must quickly adjust. Vision scientists at Washington University School of Medicine in St. Louis have identified an intricate process that allows the human eye to adapt to darkness very quickly. The same process also allows the eye to function in bright light.

The discovery could contribute to better understanding of human diseases that affect the retina, including age-related macular degeneration, the leading cause of blindness in Americans over 50. That's because the disease and the pathway the researchers have identified both involve cells called cone cells.

"Age-related macular degeneration may be modulated, perhaps, through this pathway we've identified in the retina," says principal investigator Vladimir J. Kefalov, Ph.D. "Deficiencies in this pathway affect cone cells, and so does macular degeneration, so it's possible that if we could enhance activity in this pathway, we could prevent or reverse some of that damage to cone cells."

The retina's main light-sensing cells are called rods and cones. Both use similar mechanisms to convert light into vision, but they function differently. Rods are highly sensitive and work well in dim light, but they can quickly become saturated with light and stop responding. They don't sense color either, which is why we rarely see colors in dim light. Cones, on the other hand, allow us to see colors and can adapt quickly to stark changes in light intensity.

The researchers began with studies of salamanders because their cone cells are abundant and easy to identify. Cones rely on light-sensing molecules that bind together to make up visual pigments. The pigments get destroyed when they absorb light and must be rebuilt, or recycled, for the cone cells to continue sensing light. After exposure to light, key components of pigments called chromophores can leave the cells and travel to the nearby pigment epithelium near the retina. There the chromophore is restored and returned to the photoreceptor cells.

Earlier this year, the research team removed the pigment epithelium layer in salamander retinas, so that pigment molecules could not be recycled that way. Then they exposed retinal cells both to bright light and to darkness. The rods no longer worked, but the cones continued to function properly, even without the eye's pigment epithelium.

"Exposure to bright light destroyed visual pigments in rods, and those cells could not recycle chromophores," says principal investigator Kefalov, assistant professor of ophthalmology and visual sciences. "Pigments in cones, by contrast, quickly regenerated and continued to detect light even without the pigment epithelium, so it was clear a second pathway was involved."

In the new study, Kefalov did the same experiments in cells from mice, primates and humans with the same result.

To learn how cones were able to recycle pigments without pigment epithelium, Kefalov's team has focused on a particular type of cell in the retina. Called Müller cells, these cells support and interact with rods and cones. The researchers treated mouse retinas with a chemical that destroyed the Müller cells, then exposed the retina to bright light, followed by darkness.

"When we blocked the function of Müller cells, the retinal visual pathway could not function because cones ran out of photopigment and could not adapt to dark," Kefalov says.

The new paper, published in the journal Current Biology, suggests Müller cells are key to this pathway in mammals, including humans.

When those cells function properly, cones in the mouse, primate and human retinas are able to function in bright light and adapt to darkness, independently of the pigment epithelium, Kefalov says.

He says this discovery means it may one day be possible to manipulate this pathway in the retina to improve vision when the other pathway, involving pigment epithelium, has been interrupted by injury or disease, such as age-related macular degeneration.

Wang JS, Kefalov VJ. An alternative pathway mediates the mouse and human cone visual cycle. Current Biology vol. 19 (19), Oct. 13, 2009.

(related paper)

Wang JS, Estevez ME, Cornwall MC Kefalov VJ. Intra-retinal visual cycle required for rapid and complete cone dark adaptation. Nature Neuroscience, vol. 12, pp. 295-302, online Feb. 1, 2009

This study was supported by the National Eye Institute of the National Institutes of Health and by Research to Prevent Blindness.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>