Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new way to kill pediatric brain tumors

10.02.2010
Researchers at Washington University School of Medicine in St. Louis have shown once again that "ready, fire, aim," nonsensical though it may sound, can be an essential approach to research.

The scientists robotically "fired" 2,000 compounds into culture plates containing tumor cells to see if the compounds had any effect. When the robotic screener found one substance had scored a hit by inhibiting growth of the tumor cells in its plate, researchers analyzed what that compound acted against. Follow-up studies showed that the drug slowed tumor growth in mice by inhibiting the function of a protein called STAT3.

As a result, researchers now have a previously unrecognized target, STAT3, at which they can "aim" new drugs for the treatment of cancer in neurofibromatosis-1 (NF1), a genetic condition that causes increased risk of benign and malignant brain tumors.

"We were excited to find that the slowed tumor growth we observed following treatment resulted from increased tumor cell death — an effect we hadn't seen before when we blocked other NF1 growth control molecules," says senior author David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology. "Now we can identify the genes that STAT3 influences to fine-tune our treatments and ensure that we kill cancer cells with minimal harm to normal cells."

Gutmann is director of the Neurofibromatosis Center at Washington University, a national referral center for patients with all forms of neurofibromatosis. The center is active both in clinical trials and in basic research to help develop innovative new approaches for treating patients with NF. Gutmann is also co-director of the neuro-oncology program at the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital.

Gutmann collaborated on this project with David Piwnica-Worms, M.D., Ph.D., professor of radiology and of developmental biology and director of the Molecular Imaging Center at Washington University. The results appear this month in the journal Cancer Research.

Cucurbitacin-I, the compound that led scientists to STAT3, is a plant steroid. It belongs to a family of bitter-tasting compounds previously identified as inhibitors of STAT3. Gutmann says cucurbitacin-I is likely too toxic to be suitable for use in clinical trials at this time.

After the successful robotic test of cucurbitacin-I, researchers showed that STAT3, which turns on and off the activity of a number of genes, is unusually active in NF1 tumor cells. Further investigation revealed that STAT3 activity is regulated by another gene very familiar to Gutmann: the mammalian target of rapamycin (mTOR).

Gutmann's laboratory linked mTOR and the processes it controls to NF1 years ago. The new connection between STAT3 and the mTOR pathway makes STAT3 the last link in a chain of molecules that take growth-promoting signals from the cell membrane to the nucleus. Gutmann says he is encouraged by the possibility that scientists might be able to decipher the genetic program controlled by STAT3 in order to develop more refined treatments for tumors in patients with NF1.

"We went in with a 'we don't know enough' approach, let's try 'ready, fire, aim,' and it paid off," he says.

Banerjee S, Byrd JN, Gianino SM, Harpstrite SE, Rodriguez FJ, Tuskan RG, Reilly KM, Piwnica-Worms DR, Gutmann DH. Neurofibromin controls cell growth by regulating signal transducer and activator of transcription 3 activity in vitro and in vivo. Cancer Research, Feb. 15, 2010.

Funding from the Department of Defense, the National Institutes of Health and the Siteman Cancer Center supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>