Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover new way to kill pediatric brain tumors

Researchers at Washington University School of Medicine in St. Louis have shown once again that "ready, fire, aim," nonsensical though it may sound, can be an essential approach to research.

The scientists robotically "fired" 2,000 compounds into culture plates containing tumor cells to see if the compounds had any effect. When the robotic screener found one substance had scored a hit by inhibiting growth of the tumor cells in its plate, researchers analyzed what that compound acted against. Follow-up studies showed that the drug slowed tumor growth in mice by inhibiting the function of a protein called STAT3.

As a result, researchers now have a previously unrecognized target, STAT3, at which they can "aim" new drugs for the treatment of cancer in neurofibromatosis-1 (NF1), a genetic condition that causes increased risk of benign and malignant brain tumors.

"We were excited to find that the slowed tumor growth we observed following treatment resulted from increased tumor cell death — an effect we hadn't seen before when we blocked other NF1 growth control molecules," says senior author David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology. "Now we can identify the genes that STAT3 influences to fine-tune our treatments and ensure that we kill cancer cells with minimal harm to normal cells."

Gutmann is director of the Neurofibromatosis Center at Washington University, a national referral center for patients with all forms of neurofibromatosis. The center is active both in clinical trials and in basic research to help develop innovative new approaches for treating patients with NF. Gutmann is also co-director of the neuro-oncology program at the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital.

Gutmann collaborated on this project with David Piwnica-Worms, M.D., Ph.D., professor of radiology and of developmental biology and director of the Molecular Imaging Center at Washington University. The results appear this month in the journal Cancer Research.

Cucurbitacin-I, the compound that led scientists to STAT3, is a plant steroid. It belongs to a family of bitter-tasting compounds previously identified as inhibitors of STAT3. Gutmann says cucurbitacin-I is likely too toxic to be suitable for use in clinical trials at this time.

After the successful robotic test of cucurbitacin-I, researchers showed that STAT3, which turns on and off the activity of a number of genes, is unusually active in NF1 tumor cells. Further investigation revealed that STAT3 activity is regulated by another gene very familiar to Gutmann: the mammalian target of rapamycin (mTOR).

Gutmann's laboratory linked mTOR and the processes it controls to NF1 years ago. The new connection between STAT3 and the mTOR pathway makes STAT3 the last link in a chain of molecules that take growth-promoting signals from the cell membrane to the nucleus. Gutmann says he is encouraged by the possibility that scientists might be able to decipher the genetic program controlled by STAT3 in order to develop more refined treatments for tumors in patients with NF1.

"We went in with a 'we don't know enough' approach, let's try 'ready, fire, aim,' and it paid off," he says.

Banerjee S, Byrd JN, Gianino SM, Harpstrite SE, Rodriguez FJ, Tuskan RG, Reilly KM, Piwnica-Worms DR, Gutmann DH. Neurofibromin controls cell growth by regulating signal transducer and activator of transcription 3 activity in vitro and in vivo. Cancer Research, Feb. 15, 2010.

Funding from the Department of Defense, the National Institutes of Health and the Siteman Cancer Center supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>