Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new way to kill pediatric brain tumors

10.02.2010
Researchers at Washington University School of Medicine in St. Louis have shown once again that "ready, fire, aim," nonsensical though it may sound, can be an essential approach to research.

The scientists robotically "fired" 2,000 compounds into culture plates containing tumor cells to see if the compounds had any effect. When the robotic screener found one substance had scored a hit by inhibiting growth of the tumor cells in its plate, researchers analyzed what that compound acted against. Follow-up studies showed that the drug slowed tumor growth in mice by inhibiting the function of a protein called STAT3.

As a result, researchers now have a previously unrecognized target, STAT3, at which they can "aim" new drugs for the treatment of cancer in neurofibromatosis-1 (NF1), a genetic condition that causes increased risk of benign and malignant brain tumors.

"We were excited to find that the slowed tumor growth we observed following treatment resulted from increased tumor cell death — an effect we hadn't seen before when we blocked other NF1 growth control molecules," says senior author David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology. "Now we can identify the genes that STAT3 influences to fine-tune our treatments and ensure that we kill cancer cells with minimal harm to normal cells."

Gutmann is director of the Neurofibromatosis Center at Washington University, a national referral center for patients with all forms of neurofibromatosis. The center is active both in clinical trials and in basic research to help develop innovative new approaches for treating patients with NF. Gutmann is also co-director of the neuro-oncology program at the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital.

Gutmann collaborated on this project with David Piwnica-Worms, M.D., Ph.D., professor of radiology and of developmental biology and director of the Molecular Imaging Center at Washington University. The results appear this month in the journal Cancer Research.

Cucurbitacin-I, the compound that led scientists to STAT3, is a plant steroid. It belongs to a family of bitter-tasting compounds previously identified as inhibitors of STAT3. Gutmann says cucurbitacin-I is likely too toxic to be suitable for use in clinical trials at this time.

After the successful robotic test of cucurbitacin-I, researchers showed that STAT3, which turns on and off the activity of a number of genes, is unusually active in NF1 tumor cells. Further investigation revealed that STAT3 activity is regulated by another gene very familiar to Gutmann: the mammalian target of rapamycin (mTOR).

Gutmann's laboratory linked mTOR and the processes it controls to NF1 years ago. The new connection between STAT3 and the mTOR pathway makes STAT3 the last link in a chain of molecules that take growth-promoting signals from the cell membrane to the nucleus. Gutmann says he is encouraged by the possibility that scientists might be able to decipher the genetic program controlled by STAT3 in order to develop more refined treatments for tumors in patients with NF1.

"We went in with a 'we don't know enough' approach, let's try 'ready, fire, aim,' and it paid off," he says.

Banerjee S, Byrd JN, Gianino SM, Harpstrite SE, Rodriguez FJ, Tuskan RG, Reilly KM, Piwnica-Worms DR, Gutmann DH. Neurofibromin controls cell growth by regulating signal transducer and activator of transcription 3 activity in vitro and in vivo. Cancer Research, Feb. 15, 2010.

Funding from the Department of Defense, the National Institutes of Health and the Siteman Cancer Center supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>