Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover new way to kill pediatric brain tumors

Researchers at Washington University School of Medicine in St. Louis have shown once again that "ready, fire, aim," nonsensical though it may sound, can be an essential approach to research.

The scientists robotically "fired" 2,000 compounds into culture plates containing tumor cells to see if the compounds had any effect. When the robotic screener found one substance had scored a hit by inhibiting growth of the tumor cells in its plate, researchers analyzed what that compound acted against. Follow-up studies showed that the drug slowed tumor growth in mice by inhibiting the function of a protein called STAT3.

As a result, researchers now have a previously unrecognized target, STAT3, at which they can "aim" new drugs for the treatment of cancer in neurofibromatosis-1 (NF1), a genetic condition that causes increased risk of benign and malignant brain tumors.

"We were excited to find that the slowed tumor growth we observed following treatment resulted from increased tumor cell death — an effect we hadn't seen before when we blocked other NF1 growth control molecules," says senior author David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology. "Now we can identify the genes that STAT3 influences to fine-tune our treatments and ensure that we kill cancer cells with minimal harm to normal cells."

Gutmann is director of the Neurofibromatosis Center at Washington University, a national referral center for patients with all forms of neurofibromatosis. The center is active both in clinical trials and in basic research to help develop innovative new approaches for treating patients with NF. Gutmann is also co-director of the neuro-oncology program at the Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital.

Gutmann collaborated on this project with David Piwnica-Worms, M.D., Ph.D., professor of radiology and of developmental biology and director of the Molecular Imaging Center at Washington University. The results appear this month in the journal Cancer Research.

Cucurbitacin-I, the compound that led scientists to STAT3, is a plant steroid. It belongs to a family of bitter-tasting compounds previously identified as inhibitors of STAT3. Gutmann says cucurbitacin-I is likely too toxic to be suitable for use in clinical trials at this time.

After the successful robotic test of cucurbitacin-I, researchers showed that STAT3, which turns on and off the activity of a number of genes, is unusually active in NF1 tumor cells. Further investigation revealed that STAT3 activity is regulated by another gene very familiar to Gutmann: the mammalian target of rapamycin (mTOR).

Gutmann's laboratory linked mTOR and the processes it controls to NF1 years ago. The new connection between STAT3 and the mTOR pathway makes STAT3 the last link in a chain of molecules that take growth-promoting signals from the cell membrane to the nucleus. Gutmann says he is encouraged by the possibility that scientists might be able to decipher the genetic program controlled by STAT3 in order to develop more refined treatments for tumors in patients with NF1.

"We went in with a 'we don't know enough' approach, let's try 'ready, fire, aim,' and it paid off," he says.

Banerjee S, Byrd JN, Gianino SM, Harpstrite SE, Rodriguez FJ, Tuskan RG, Reilly KM, Piwnica-Worms DR, Gutmann DH. Neurofibromin controls cell growth by regulating signal transducer and activator of transcription 3 activity in vitro and in vivo. Cancer Research, Feb. 15, 2010.

Funding from the Department of Defense, the National Institutes of Health and the Siteman Cancer Center supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>