Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how infectious bacteria can switch species

09.10.2008
Scientists from the Universities of Bath and Exeter have developed a rapid new way of checking for toxic genes in disease-causing bacteria which infect insects and humans. Their findings could in the future lead to new vaccines and anti-bacterial drugs.

They studied a bacterium called Photorhabdus asymbiotica, which normally infects and kills insects, but which can also cause an unpleasant infection in humans.

By testing groups of genes from the bacteria against three types of invertebrates (insects, worms and amoebae) and mammalian cells, the scientists were able to identify toxins and other molecules, called virulence factors, made by the bacteria that allow it to infect each type of organism.

By pinning down the genes responsible for each of these possible virulence factors and comparing them with the genes of well known bacteria, the scientists have been able to map out which regions of the bacteria’s DNA control its ability to infect and damage invertebrates, and also potentially humans.

The researchers from Bath and Exeter are publishing their findings in the prestigious journal Proceedings of the National Academy of Sciences of the United States of America.

Dr Nick Waterfield from the University of Bath’s Department of Biology & Biochemistry said: “Many bacteria have evolved to infect one particular type of plant or animal and most of the toxins they use to do this also have an effect in other hosts.

“Some of the toxins they use for infecting can also allow the bacteria to jump across into another species like humans, perhaps with fatal consequences.”

Dr Maria Sanchez-Contreras, who works with Dr Waterfield at the University of Bath said: “We have developed a new way of discovering a greater number of previously unknown toxins and measuring how dangerous or virulent these bacteria are. Identifying the genes responsible for the production and secretion of these bacterial toxins will allow us find ways to prevent disease.

“Our new technique, called Rapid Virulence Annotation (RVA), allows us to make faster assessments of the disease-causing agents in multiple types of organism; it lets us pinpoint sequences of genes which may pose a risk to humans; and it gives us a powerful tool to identify virulence genes in other known bacteria.

“Finally, it helps us identify new targets for drugs to fight these diseases and control pests, and for developing preventive vaccines.”

Richard ffrench-Constant, Professor of insect microbiology from the University of Exeter’s Cornwall Campus adds: “RVA allows us to look for virulence factors that are totally novel and does not rely upon traditional searches based on factors already known from other bacteria. We have already discovered that some totally unexpected genes are indeed involved in bacterial virulence. This technique should prove to be a gold mine for potential vaccine candidates.”

The scientists are already using this relatively cheap and highly accurate RVA technique in other disease-causing bacteria to identify the genes which allow some diseases to jump the species barrier.

Press Team | alfa
Further information:
http://www.bath.ac.uk/
http://www.bath.ac.uk/news/2008/10/9/rva-waterfield-sanchez.html

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>