Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how infectious bacteria can switch species

09.10.2008
Scientists from the Universities of Bath and Exeter have developed a rapid new way of checking for toxic genes in disease-causing bacteria which infect insects and humans. Their findings could in the future lead to new vaccines and anti-bacterial drugs.

They studied a bacterium called Photorhabdus asymbiotica, which normally infects and kills insects, but which can also cause an unpleasant infection in humans.

By testing groups of genes from the bacteria against three types of invertebrates (insects, worms and amoebae) and mammalian cells, the scientists were able to identify toxins and other molecules, called virulence factors, made by the bacteria that allow it to infect each type of organism.

By pinning down the genes responsible for each of these possible virulence factors and comparing them with the genes of well known bacteria, the scientists have been able to map out which regions of the bacteria’s DNA control its ability to infect and damage invertebrates, and also potentially humans.

The researchers from Bath and Exeter are publishing their findings in the prestigious journal Proceedings of the National Academy of Sciences of the United States of America.

Dr Nick Waterfield from the University of Bath’s Department of Biology & Biochemistry said: “Many bacteria have evolved to infect one particular type of plant or animal and most of the toxins they use to do this also have an effect in other hosts.

“Some of the toxins they use for infecting can also allow the bacteria to jump across into another species like humans, perhaps with fatal consequences.”

Dr Maria Sanchez-Contreras, who works with Dr Waterfield at the University of Bath said: “We have developed a new way of discovering a greater number of previously unknown toxins and measuring how dangerous or virulent these bacteria are. Identifying the genes responsible for the production and secretion of these bacterial toxins will allow us find ways to prevent disease.

“Our new technique, called Rapid Virulence Annotation (RVA), allows us to make faster assessments of the disease-causing agents in multiple types of organism; it lets us pinpoint sequences of genes which may pose a risk to humans; and it gives us a powerful tool to identify virulence genes in other known bacteria.

“Finally, it helps us identify new targets for drugs to fight these diseases and control pests, and for developing preventive vaccines.”

Richard ffrench-Constant, Professor of insect microbiology from the University of Exeter’s Cornwall Campus adds: “RVA allows us to look for virulence factors that are totally novel and does not rely upon traditional searches based on factors already known from other bacteria. We have already discovered that some totally unexpected genes are indeed involved in bacterial virulence. This technique should prove to be a gold mine for potential vaccine candidates.”

The scientists are already using this relatively cheap and highly accurate RVA technique in other disease-causing bacteria to identify the genes which allow some diseases to jump the species barrier.

Press Team | alfa
Further information:
http://www.bath.ac.uk/
http://www.bath.ac.uk/news/2008/10/9/rva-waterfield-sanchez.html

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>