Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how infectious bacteria can switch species

09.10.2008
Scientists from the Universities of Bath and Exeter have developed a rapid new way of checking for toxic genes in disease-causing bacteria which infect insects and humans. Their findings could in the future lead to new vaccines and anti-bacterial drugs.

They studied a bacterium called Photorhabdus asymbiotica, which normally infects and kills insects, but which can also cause an unpleasant infection in humans.

By testing groups of genes from the bacteria against three types of invertebrates (insects, worms and amoebae) and mammalian cells, the scientists were able to identify toxins and other molecules, called virulence factors, made by the bacteria that allow it to infect each type of organism.

By pinning down the genes responsible for each of these possible virulence factors and comparing them with the genes of well known bacteria, the scientists have been able to map out which regions of the bacteria’s DNA control its ability to infect and damage invertebrates, and also potentially humans.

The researchers from Bath and Exeter are publishing their findings in the prestigious journal Proceedings of the National Academy of Sciences of the United States of America.

Dr Nick Waterfield from the University of Bath’s Department of Biology & Biochemistry said: “Many bacteria have evolved to infect one particular type of plant or animal and most of the toxins they use to do this also have an effect in other hosts.

“Some of the toxins they use for infecting can also allow the bacteria to jump across into another species like humans, perhaps with fatal consequences.”

Dr Maria Sanchez-Contreras, who works with Dr Waterfield at the University of Bath said: “We have developed a new way of discovering a greater number of previously unknown toxins and measuring how dangerous or virulent these bacteria are. Identifying the genes responsible for the production and secretion of these bacterial toxins will allow us find ways to prevent disease.

“Our new technique, called Rapid Virulence Annotation (RVA), allows us to make faster assessments of the disease-causing agents in multiple types of organism; it lets us pinpoint sequences of genes which may pose a risk to humans; and it gives us a powerful tool to identify virulence genes in other known bacteria.

“Finally, it helps us identify new targets for drugs to fight these diseases and control pests, and for developing preventive vaccines.”

Richard ffrench-Constant, Professor of insect microbiology from the University of Exeter’s Cornwall Campus adds: “RVA allows us to look for virulence factors that are totally novel and does not rely upon traditional searches based on factors already known from other bacteria. We have already discovered that some totally unexpected genes are indeed involved in bacterial virulence. This technique should prove to be a gold mine for potential vaccine candidates.”

The scientists are already using this relatively cheap and highly accurate RVA technique in other disease-causing bacteria to identify the genes which allow some diseases to jump the species barrier.

Press Team | alfa
Further information:
http://www.bath.ac.uk/
http://www.bath.ac.uk/news/2008/10/9/rva-waterfield-sanchez.html

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>