Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how infectious bacteria can switch species

09.10.2008
Scientists from the Universities of Bath and Exeter have developed a rapid new way of checking for toxic genes in disease-causing bacteria which infect insects and humans. Their findings could in the future lead to new vaccines and anti-bacterial drugs.

They studied a bacterium called Photorhabdus asymbiotica, which normally infects and kills insects, but which can also cause an unpleasant infection in humans.

By testing groups of genes from the bacteria against three types of invertebrates (insects, worms and amoebae) and mammalian cells, the scientists were able to identify toxins and other molecules, called virulence factors, made by the bacteria that allow it to infect each type of organism.

By pinning down the genes responsible for each of these possible virulence factors and comparing them with the genes of well known bacteria, the scientists have been able to map out which regions of the bacteria’s DNA control its ability to infect and damage invertebrates, and also potentially humans.

The researchers from Bath and Exeter are publishing their findings in the prestigious journal Proceedings of the National Academy of Sciences of the United States of America.

Dr Nick Waterfield from the University of Bath’s Department of Biology & Biochemistry said: “Many bacteria have evolved to infect one particular type of plant or animal and most of the toxins they use to do this also have an effect in other hosts.

“Some of the toxins they use for infecting can also allow the bacteria to jump across into another species like humans, perhaps with fatal consequences.”

Dr Maria Sanchez-Contreras, who works with Dr Waterfield at the University of Bath said: “We have developed a new way of discovering a greater number of previously unknown toxins and measuring how dangerous or virulent these bacteria are. Identifying the genes responsible for the production and secretion of these bacterial toxins will allow us find ways to prevent disease.

“Our new technique, called Rapid Virulence Annotation (RVA), allows us to make faster assessments of the disease-causing agents in multiple types of organism; it lets us pinpoint sequences of genes which may pose a risk to humans; and it gives us a powerful tool to identify virulence genes in other known bacteria.

“Finally, it helps us identify new targets for drugs to fight these diseases and control pests, and for developing preventive vaccines.”

Richard ffrench-Constant, Professor of insect microbiology from the University of Exeter’s Cornwall Campus adds: “RVA allows us to look for virulence factors that are totally novel and does not rely upon traditional searches based on factors already known from other bacteria. We have already discovered that some totally unexpected genes are indeed involved in bacterial virulence. This technique should prove to be a gold mine for potential vaccine candidates.”

The scientists are already using this relatively cheap and highly accurate RVA technique in other disease-causing bacteria to identify the genes which allow some diseases to jump the species barrier.

Press Team | alfa
Further information:
http://www.bath.ac.uk/
http://www.bath.ac.uk/news/2008/10/9/rva-waterfield-sanchez.html

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>