Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover immune pathway

Discovery from Aarhus University maps an important pathway in the first line of the immune defence - In the longer run, this discovery may have implications for the treatment of stroke and cancer patients
Researchers from Aarhus University, Denmark, have now discovered an important mechanism behind one of our most fundamental lines of immune function. The discovery has been published in the esteemed scientific journal, The Journal of Immunology, where it has been highlighted as a top story.

In collaboration with colleagues from USA and Turkey, they have discovered exactly which enzymes collaborate in the first line of the immune defence. Thus, they answer a central question about the so-called complement system, which has been a focal point of the scientific field for the past decade: which enzyme does what?

Using blood samples from a unique patient harbouring a rare genetic syndrome, the researchers from Aarhus University have now established that it is the enzyme MASP-1 that is key to the activation of the complement system.

"Understanding the immune system is a central goal in itself in scientific terms, especially for our research group conducting basic research. But in the longer run, it is also an important goal that this knowledge may help people and cure diseases", says postdoc Soeren Egedal Degn from Aarhus University, who is first author on the paper.

Big perspectives for patients

He believes that once one has defined how the complement system works, it will be possible to manipulate it:

"For example this system is important for the survival of patients undergoing chemotherapy, because this treatment suppresses other functions of the immune system - so in their case it is beneficial to "rev up" the system. But following a heart attack there may be reasons to instead dampen the system. The complement system has an unfortunate tendency to attack tissues that have suffered damage due to deprivation of oxygen, and thereby it exacerbates the damage already done to the heart", says Soeren Egedal Degn.

He notes however, that the new discovery is unlikely to result in concrete new treatment modalities in this decade.

MASP-1 and the lectin pathway

Behind the discovery of the central role of MASP-1 in the complement system is, apart from Soeren Egedal Degn, also the Aarhus professors Jens Chr. Jensenius and Steffen Thiel, who are considered international experts in the field. They have previously discovered the four other known proteins related to MASP-1, namely MASP-2, MASP-3, MAp19 and MAp44. Together, these proteins make up a central part of the activation pathway of complement known as the lectin pathway. The research group in Aarhus, which also includes the laboratory technicians Lisbeth Jensen and Annette G. Hansen, has been central in the elucidation of the lectin pathway through the past 15 years.

The enzyme MASP-1 is able to efficiently auto-activate, for example when it "senses" a bacterium. It then activates MASP-2, which in turn activates the rest of the complement system in a cascade-like manner, where a long list of enzymes sequentially activate each other - much like dominoes. The result is a signal to immune cells to home to the area in the body, where the system is activated, and to kill the intruding bacteria. The bacteria are also covered in "molecular tags", making it easier for the immune cells to recognize and efficiently engulf them. Finally, the complement system directly "punches holes" in the bacteria, by forming pore-like structures in their membranes.

This work has been supported by the Lundbeck Foundation, The Novo Nordic Foundation, as well as the Danish Council for Independent Research - Medical Sciences. Soeren Egedal Degn is employed at the Department of Biomedicine, Aarhus University, through a postdoctoral fellowship from the Carlsberg Foundation.

Soeren Egedal Degn | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>