Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover immune pathway

06.11.2012
Discovery from Aarhus University maps an important pathway in the first line of the immune defence - In the longer run, this discovery may have implications for the treatment of stroke and cancer patients
Researchers from Aarhus University, Denmark, have now discovered an important mechanism behind one of our most fundamental lines of immune function. The discovery has been published in the esteemed scientific journal, The Journal of Immunology, where it has been highlighted as a top story.

In collaboration with colleagues from USA and Turkey, they have discovered exactly which enzymes collaborate in the first line of the immune defence. Thus, they answer a central question about the so-called complement system, which has been a focal point of the scientific field for the past decade: which enzyme does what?

Using blood samples from a unique patient harbouring a rare genetic syndrome, the researchers from Aarhus University have now established that it is the enzyme MASP-1 that is key to the activation of the complement system.

"Understanding the immune system is a central goal in itself in scientific terms, especially for our research group conducting basic research. But in the longer run, it is also an important goal that this knowledge may help people and cure diseases", says postdoc Soeren Egedal Degn from Aarhus University, who is first author on the paper.

Big perspectives for patients

He believes that once one has defined how the complement system works, it will be possible to manipulate it:

"For example this system is important for the survival of patients undergoing chemotherapy, because this treatment suppresses other functions of the immune system - so in their case it is beneficial to "rev up" the system. But following a heart attack there may be reasons to instead dampen the system. The complement system has an unfortunate tendency to attack tissues that have suffered damage due to deprivation of oxygen, and thereby it exacerbates the damage already done to the heart", says Soeren Egedal Degn.

He notes however, that the new discovery is unlikely to result in concrete new treatment modalities in this decade.

MASP-1 and the lectin pathway

Behind the discovery of the central role of MASP-1 in the complement system is, apart from Soeren Egedal Degn, also the Aarhus professors Jens Chr. Jensenius and Steffen Thiel, who are considered international experts in the field. They have previously discovered the four other known proteins related to MASP-1, namely MASP-2, MASP-3, MAp19 and MAp44. Together, these proteins make up a central part of the activation pathway of complement known as the lectin pathway. The research group in Aarhus, which also includes the laboratory technicians Lisbeth Jensen and Annette G. Hansen, has been central in the elucidation of the lectin pathway through the past 15 years.

The enzyme MASP-1 is able to efficiently auto-activate, for example when it "senses" a bacterium. It then activates MASP-2, which in turn activates the rest of the complement system in a cascade-like manner, where a long list of enzymes sequentially activate each other - much like dominoes. The result is a signal to immune cells to home to the area in the body, where the system is activated, and to kill the intruding bacteria. The bacteria are also covered in "molecular tags", making it easier for the immune cells to recognize and efficiently engulf them. Finally, the complement system directly "punches holes" in the bacteria, by forming pore-like structures in their membranes.

This work has been supported by the Lundbeck Foundation, The Novo Nordic Foundation, as well as the Danish Council for Independent Research - Medical Sciences. Soeren Egedal Degn is employed at the Department of Biomedicine, Aarhus University, through a postdoctoral fellowship from the Carlsberg Foundation.

Soeren Egedal Degn | EurekAlert!
Further information:
http://www.microbiology.au.dk
http://www.au.dk

More articles from Life Sciences:

nachricht MACC1 Gene Is an Independent Prognostic Biomarker for Survival in Klatskin Tumor Patients
31.08.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Production research by Fraunhofer IAO honored with three awards at the ICPR 2015

31.08.2015 | Awards Funding

Single-Crystal Phosphors Suitable for Ultra-Bright, High-Power White Light Sources

31.08.2015 | Materials Sciences

Manchester Team Reveal New, Stable 2D Materials

31.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>