Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover immune pathway

06.11.2012
Discovery from Aarhus University maps an important pathway in the first line of the immune defence - In the longer run, this discovery may have implications for the treatment of stroke and cancer patients
Researchers from Aarhus University, Denmark, have now discovered an important mechanism behind one of our most fundamental lines of immune function. The discovery has been published in the esteemed scientific journal, The Journal of Immunology, where it has been highlighted as a top story.

In collaboration with colleagues from USA and Turkey, they have discovered exactly which enzymes collaborate in the first line of the immune defence. Thus, they answer a central question about the so-called complement system, which has been a focal point of the scientific field for the past decade: which enzyme does what?

Using blood samples from a unique patient harbouring a rare genetic syndrome, the researchers from Aarhus University have now established that it is the enzyme MASP-1 that is key to the activation of the complement system.

"Understanding the immune system is a central goal in itself in scientific terms, especially for our research group conducting basic research. But in the longer run, it is also an important goal that this knowledge may help people and cure diseases", says postdoc Soeren Egedal Degn from Aarhus University, who is first author on the paper.

Big perspectives for patients

He believes that once one has defined how the complement system works, it will be possible to manipulate it:

"For example this system is important for the survival of patients undergoing chemotherapy, because this treatment suppresses other functions of the immune system - so in their case it is beneficial to "rev up" the system. But following a heart attack there may be reasons to instead dampen the system. The complement system has an unfortunate tendency to attack tissues that have suffered damage due to deprivation of oxygen, and thereby it exacerbates the damage already done to the heart", says Soeren Egedal Degn.

He notes however, that the new discovery is unlikely to result in concrete new treatment modalities in this decade.

MASP-1 and the lectin pathway

Behind the discovery of the central role of MASP-1 in the complement system is, apart from Soeren Egedal Degn, also the Aarhus professors Jens Chr. Jensenius and Steffen Thiel, who are considered international experts in the field. They have previously discovered the four other known proteins related to MASP-1, namely MASP-2, MASP-3, MAp19 and MAp44. Together, these proteins make up a central part of the activation pathway of complement known as the lectin pathway. The research group in Aarhus, which also includes the laboratory technicians Lisbeth Jensen and Annette G. Hansen, has been central in the elucidation of the lectin pathway through the past 15 years.

The enzyme MASP-1 is able to efficiently auto-activate, for example when it "senses" a bacterium. It then activates MASP-2, which in turn activates the rest of the complement system in a cascade-like manner, where a long list of enzymes sequentially activate each other - much like dominoes. The result is a signal to immune cells to home to the area in the body, where the system is activated, and to kill the intruding bacteria. The bacteria are also covered in "molecular tags", making it easier for the immune cells to recognize and efficiently engulf them. Finally, the complement system directly "punches holes" in the bacteria, by forming pore-like structures in their membranes.

This work has been supported by the Lundbeck Foundation, The Novo Nordic Foundation, as well as the Danish Council for Independent Research - Medical Sciences. Soeren Egedal Degn is employed at the Department of Biomedicine, Aarhus University, through a postdoctoral fellowship from the Carlsberg Foundation.

Soeren Egedal Degn | EurekAlert!
Further information:
http://www.microbiology.au.dk
http://www.au.dk

More articles from Life Sciences:

nachricht Molecular Spies Sabotage a Protein's Activities in Specific Cellular Compartments
20.04.2015 | Johns Hopkins Medicine

nachricht Evolution puts checks on virgin births
20.04.2015 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advances in Molecular Electronics: Lights On – Molecule On

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.

Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller – while also...

Im Focus: Pruning of Blood Vessels: Cells Can Fuse With Themselves

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. Markus Affolter from the Biozentrum of the University of Basel. The findings of this study have been published in the journal “PLoS Biology”.

The vascular system is the supply network of the human organism and delivers oxygen and nutrients to the last corners of the body. So far, research on the...

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

High-Power Laser Spinoff Proves Versatility Is Strength

20.04.2015 | Physics and Astronomy

New “Cool Roof Time Machine” Will Accelerate Cool Roof Deployment

20.04.2015 | Architecture and Construction

STAR Heavy Flavor Tracker Detects Signs of Charm at RHIC

20.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>