Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover genetic differences between lethal and treatable forms of leukemia

08.01.2010
Epigenetic diagnosis and therapies, a new strategy for treating cancer

A tumor's genetic profile is often useful when diagnosing and deciding on treatment for certain cancers, but inexplicably, genetically similar leukemias in different patients do not always respond well to the same therapy. Weill Cornell Medical College researchers believe they may have discovered what distinguishes these patients by evaluating the "epigenetic" differences between patients with acute myeloid leukemia (AML).

In recent years it has been appreciated that there are additional chemical codes in addition to DNA sequence that control the behavior of normal and malignant cells. These additional codes are called "epi"genetic since they are contained outside of the DNA sequence.

The investigators have concluded that much of the inter-patient difference in leukemia cell behavior is dependent on a patient's specific epigenetic alterations. These results are expected to lead to tailored cancer therapies for patients who fall within the different epigenetically defined cancer subtypes.

The promising findings are published today in the journal Cancer Cell.

To make their conclusions, Dr. Ari Melnick, the study's senior author and associate professor of medicine from the Raymond and Beverly Sackler Center for Biomedical and Physical Sciences at Weill Cornell Medical College, and colleagues studied a specific epigenetic marker called DNA methylation, which plays a critical role in controlling gene expression.

They examined the DNA methylation patterning of 14,000 genes in 344 patients diagnosed with AML. By grouping these patients according to their DNA methylation profile, Dr. Melnick and his team were able to separate patients into 16 different groups. Five of these groups defined completely new AML subtypes that shared no other known feature, besides the newly discovered methylation similarities.

"The epigenetic difference between the AML subtypes may play a critical role in determining the responsiveness of the disease to therapy," says Dr. Melnick.

Traditionally, AML patients are treated with first-line chemotherapy drugs. If they fail, patients are classified as having a more severe and difficult-to-treat disease, and are then given a more aggressive therapy, like a bone marrow transplant. Being able to tell which patients are most likely to fail standard treatments could lead to the administration of more precise therapies at the outset of treatment.

They also concluded that a set of 15-gene DNA methylation biomarker was highly predictive of overall patient survival. "The findings have the potential to tell physicians whether or not a patient has a relatively easy or difficult disease to treat, and tailor a patient's therapy accordingly," explains Dr. Melnick. "This saves time trying therapies that will eventually prove to have no effect."

In addition, the investigators discovered a set of 45 genes that are almost universally methylated in AML patients. Methylation of these genes was far more common than any genetic mutation associated with AML, and could provide new ways to more effectively therapeutically target AML in the future.

"Investigators from the Sackler Center at Weill Cornell are leaders in the field of decoding epigenetic information from human tumors and ascertaining their clinical impact," says Dr. Andrew I. Schafer, chairman of the Department of Medicine at NewYork-Presbyterian Hospital/Weill Cornell Medical College. "Such findings will lead to the development of new therapies that give hope to cancer patients who are now without effective treatment."

Collaborators on this study include Maria E. Figueroa, Yushan Li, Xutao Deng, Paul J. Christos, Lucy Skrabanek, Fabien Campagne and Madhu Mazumda, all from Weill Cornell; Elizabeth Schifano and James Booth, from Cornell Univeristy, Ithaca, New York; Sanne Lugthart, Claudia Erpelinck-Verschueren, Peter J.M. Valk, Wim van Putten, Bob Löwenberg and Ruud Delwel from Erasmus University Medical Center, Rotterdam, The Netherlands; and John M. Greally from Albert Einstein College of Medicine, New York.

This study was supported by a Translational Research grant from the Leukemia and Lymphoma Society to Drs. Melnick and Delwel.

The Raymond and Beverly Sackler Center for Biomedical and Physical Sciences

The Raymond and Beverly Sackler Center for Biomedical and Physical Sciences of Weill Cornell Medical College brings together a multidisciplinary team of scientists for the purpose of catalyzing major advances in medicine. By harnessing the combined power of experimental approaches rooted in the physical and biological sciences, Sackler Center investigators can best accelerate the pace of discovery and translate these findings for the benefit of patients with various medical conditions including but not limited to cancer.

Weill Cornell Medical College

Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Affiliated with NewYork-Presbyterian Hospital and Methodist Hospital in Houston, Weill Cornell is one of only two medical colleges in the country with dual hospital affiliations.

Andrew Klein | EurekAlert!
Further information:
http://www.med.cornell.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>