Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover compound with potent effects on biological clock

16.12.2010
Using an automated screening technique developed by pharmaceutical companies to find new drugs, a team of researchers from UC San Diego and three other research institutions has discovered a molecule with the most potent effects ever seen on the biological clock.

Dubbed by the scientists "longdaysin," for its ability to dramatically slow down the biological clock, the new compound and the application of their screening method to the discovery of other clock-shifting chemicals could pave the way for a host of new drugs to treat severe sleep disorders or quickly reset the biological clocks of jet-lagged travelers who regularly travel across multiple time zones.

"Theoretically, longdaysin or a compound like it could be used to correct sleep disorders such as the genetic disorder familial advanced sleep syndrome, which is characterized by a clock that's running too fast," said Steve Kay, dean of UCSD's Division of Biological Sciences, who headed the research team, which published its findings in the December 14 issue of the journal PLoS Biology. "A compound that makes the clock slow down or speed up can also be used to phase-shift the clock—in other words, to bump or reset the hands of the clock. This would help your body catch up when it is jet lagged or reset it to a normal day-night cycle when it has been thrown out of phase by shift work."

The researchers demonstrated the dramatic effects of longdaysin by lengthening the biological clocks of larval zebra fish by more than 10 hours.

"Longdaysin is the champion by far in how much it can move the clock," said Kay, whose laboratory at UCSD had found compounds in previous studies that could shift the biological clock by as much as several hours at most. "We were really surprised to find out how much you can slow down the biological clock with this compound and still have a clock that is running."

Biologists in Kay's laboratory and the nearby Genomics Institute of the Novartis Research Foundation, who were led by Tsuyoshi Hirota, the first author of the paper, discovered longdaysin by screening thousands of compounds with a chemical robot that tested the reaction of each compound with a line of human bone cancer cells that the researchers' genetically modified so that they could visually see changes in the cells' circadian rhythms. This was done by attaching in the cells a clock gene to a luciferase gene used by fireflies to glow at night, so that the cells glowed when the biological clock was activated. A chemical robot screened more than 120,000 potential compounds from a chemical library into individual micro-titer wells, a system used by drug companies called high-throughput screening, and automatically singled out those molecules found to have the biggest effects on the biological clock.

Once Kay's group had isolated longdaysin, it turned to biological chemists in Peter Schultz's laboratory at The Scripps Research Institute to characterize the molecule and figure out the mechanisms of how it lengthened the biological clock. That analysis showed that three separate protein kinases on the compound were responsible for the dramatic effect of longdaysin, one of which, CK1alpha, had previously been ignored by chronobiology researchers.

"Because this compound doesn't just hit one target, but multiple targets, it showed us that if you want to shift the biological clock in a major way you have to hit multiple kinases," said Kay.

The researchers then showed that longdaysin had the same effect of lengthening the biological clock in mouse tissue samples and zebra fish larvae that carried luciferase genes attached to their clock genes.

"We were really encouraged to find that when we added longdaysin to these living zebra fish, we lengthened the biological clock and didn't see any obvious deleterious effects," said Kay. "They grow normally while they are exposed to this compound. That showed us that our high-throughput assay works and accurately predicts how the compound works on the biological clock of a living fish. The next thing to do is to try this in a mammalian system."

Kay's research team plans to test longdaysin on mice in the near future, but its goal isn't to develop longdaysin into a drug.

"Longdaysin is not as potent as we would like," he adds. "This will be a tool for research."

Other co-authors of the paper besides Hirota and Schultz were Warren Lewis, Eric Zhang, Ghislain Breton and David Traver of UCSD; Jae Wook Lee of TSRI; Xianzhong Liu, Michael Garcia Eric Peters of the Genomics Institute of the Novartis Research Foundation; and Pierre Etchegaray of the University of Massachusetts Medical School.

The study was funded by grants from the National Institutes of Health.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>