Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover chemical that may protect hearts of muscular dystrophy patients

16.03.2010
By administering a chemical called a 'molecular band-aid,' U of M researchers were able to prevent heart injury in dystrophic canines

Researchers at the University of Minnesota Medical School have discovered a chemical that may, over the long term, protect the hearts of Duchenne muscular dystrophy patients – a fatal and most common form of muscular dystrophy in children.

The chemical, which Medical School scientists have termed a "molecular band-aid," seeks out tiny cuts in diseased heart muscle. When injected into the bloodstream, the molecular band-aid finds these microscopic cuts and protects them from harmful substances so the heart muscle cells can survive and function normally. In order to be effective the chemical must be repeatedly injected, much in the same way a diabetic patient requires regular injections of insulin,

In the March 15 edition of the Journal of Clinical Investigation, Joseph Metzger, Ph.D., professor and chair of the Department of Integrative Biology and Physiology, DeWayne Townsend, D.V.M., Ph.D., assistant professor in the Department of Integrative Biology and Physiology, and colleagues showed the first ever effective long-term treatment for preventing cardiac injury and progressive heart chamber remodeling in a severely affected canine model of muscular dystrophy.

In the study, dystrophic dogs were given the molecular band-aid continuously for two months. The treatment completely blocked cardiac injury and heart disease remodeling compared to the control group of dystrophic canines receiving a placebo.

"The advance in this study is demonstrating that molecular band-aid therapy is a safe and effective approach in preventing heart damage in severely affected large animals with muscular dystrophy," Metzger said.

The hopeful next major step is to determine whether children with muscular dystrophy can be helped by applying the molecular band-aid, first over short periods, then if successful, over the long term with the ultimate goal of enhancing the health and quality of life of muscular dystrophy patients.

Muscular dystrophy causes the muscles in the body to progressively weaken. Duchenne is the most common and severe form of childhood muscular dystrophy. About one of 3,500 boys are born with the crippling disease. Symptoms usually begin in children who are 4-5 years-old, most are in a wheelchair by age 12, and many who have the disease pass away by their late teens to early 20s. The primary causes of death are respiratory failure and heart failure. Current treatments, largely limited to corticosteroids, are minimally effective and can cause serious side effects.

The potential for the molecular band-aid discovery is yet to be fully realized – and may be stretched even beyond those who are impacted by muscular dystrophy. Metzger and Townsend believe the molecular band-aid may be applicable in elderly patients who simply have weakened heart muscle. If that is the case, the molecular Band-Aid could be used as a therapy for millions.

"We speculate that certain types of heart damage that occur when we age or when the heart is failing may also someday benefit from molecular band-aid therapy," Townsend said.

The research was funded by the National Institutes of Health and the Foundation to Eradicate Duchenne.

Nick Hanson | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>