Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover chemical that may protect hearts of muscular dystrophy patients

By administering a chemical called a 'molecular band-aid,' U of M researchers were able to prevent heart injury in dystrophic canines

Researchers at the University of Minnesota Medical School have discovered a chemical that may, over the long term, protect the hearts of Duchenne muscular dystrophy patients – a fatal and most common form of muscular dystrophy in children.

The chemical, which Medical School scientists have termed a "molecular band-aid," seeks out tiny cuts in diseased heart muscle. When injected into the bloodstream, the molecular band-aid finds these microscopic cuts and protects them from harmful substances so the heart muscle cells can survive and function normally. In order to be effective the chemical must be repeatedly injected, much in the same way a diabetic patient requires regular injections of insulin,

In the March 15 edition of the Journal of Clinical Investigation, Joseph Metzger, Ph.D., professor and chair of the Department of Integrative Biology and Physiology, DeWayne Townsend, D.V.M., Ph.D., assistant professor in the Department of Integrative Biology and Physiology, and colleagues showed the first ever effective long-term treatment for preventing cardiac injury and progressive heart chamber remodeling in a severely affected canine model of muscular dystrophy.

In the study, dystrophic dogs were given the molecular band-aid continuously for two months. The treatment completely blocked cardiac injury and heart disease remodeling compared to the control group of dystrophic canines receiving a placebo.

"The advance in this study is demonstrating that molecular band-aid therapy is a safe and effective approach in preventing heart damage in severely affected large animals with muscular dystrophy," Metzger said.

The hopeful next major step is to determine whether children with muscular dystrophy can be helped by applying the molecular band-aid, first over short periods, then if successful, over the long term with the ultimate goal of enhancing the health and quality of life of muscular dystrophy patients.

Muscular dystrophy causes the muscles in the body to progressively weaken. Duchenne is the most common and severe form of childhood muscular dystrophy. About one of 3,500 boys are born with the crippling disease. Symptoms usually begin in children who are 4-5 years-old, most are in a wheelchair by age 12, and many who have the disease pass away by their late teens to early 20s. The primary causes of death are respiratory failure and heart failure. Current treatments, largely limited to corticosteroids, are minimally effective and can cause serious side effects.

The potential for the molecular band-aid discovery is yet to be fully realized – and may be stretched even beyond those who are impacted by muscular dystrophy. Metzger and Townsend believe the molecular band-aid may be applicable in elderly patients who simply have weakened heart muscle. If that is the case, the molecular Band-Aid could be used as a therapy for millions.

"We speculate that certain types of heart damage that occur when we age or when the heart is failing may also someday benefit from molecular band-aid therapy," Townsend said.

The research was funded by the National Institutes of Health and the Foundation to Eradicate Duchenne.

Nick Hanson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>