Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how a mutated protein outwits evolution and fuels leukemia

21.06.2013
Findings suggest a potent new therapeutic target for certain types of cancer

Scientists have discovered the survival secret to a genetic mutation that stokes leukemia cells, solving an evolutionary riddle and paving the way to a highly targeted therapy for leukemia.

In a paper published today in Cell, researchers at NYU Langone Medical Center describe how a mutated protein, called Fbxw7, behaves differently when expressed in cancer cells versus healthy cells. "Fbxw7 is essential for making blood cells, so the big mystery is why a mutation on a gene so important for survival would persist," says lead author Iannis Aifantis, PhD, chair of pathology at NYU Langone Medical Center and an Early Career Scientist at Howard Hughes Medical Institute. "What we've found is that the mutation affects cancerous cells but not healthy cells."

The Fbxw7 protein regulates the production of so-called hematopoietic stem cells, precursors that give rise to all types of blood cells. Without Fbxw7, the body loses the ability to produce blood and eventually succumbs to anemia. Scientists are only beginning to understand why mutated Fbxw7 appears in a significant portion of human tumors, including gastric, prostate, and some breast cancers. The mutation is especially prevalent in T-cell acute lymphoblastic leukemia, or T-ALL, a rare but lethal type of pediatric leukemia that causes the over-production of immature white blood cells.

In their experiments, Dr. Aifantis, working in collaboration with graduate student Bryan King and others, began by introducing mutated Fbxw7 into healthy blood stem cells in mice. "We thought the mutation would induce anemia, just as it does when Fbxw7 is deleted," says Dr. Aifantis. But to the researchers' surprise, nothing happened—the stem cells continued to manufacture blood cells.

When the researchers then introduced in mice the mutated Fbxw7 into leukemic blood stem cells—those that overproduce white blood cells and cause leukemia—the cancer accelerated. "We found that the mutation made leukemia stem cells much more aggressive," Dr. Aifantis says.

In follow-up experiments, the researchers showed that Fbxw7 binds to and degrades a protein called Myc, which fuels leukemic stem cells, and has long been associated with many other cancers and the recurrence of cancer after treatment. When Fbxw7 is mutated, Myc is left unchecked, they found, and the population of cancer stem cells swells. This insight also helps explain why healthy blood stem cells seem to "ignore" mutated Fbxw7. Unlike leukemic stem cells, healthy blood stem cells typically lie dormant until the body requires an emergency supply of blood and they rarely express Myc. "Normal blood stem cells express very little Myc because they are not cycling. A mutation does not affect the substrate because the substrate does not exist," says Dr. Aifantis. "Leukemia stem cells, however, do express Myc and Fbxw7 mutations increase its abundance."

The researchers then wondered if eliminating Myc could potentially block leukemia. Indeed, deleting the Myc gene in mice with leukemia depleted leukemic stem cells and stopped the growth of tumors. They achieved the same results in mice and human cell and bone marrow samples of T-ALL using a new class of cancer drug called a BET inhibitor that blocks Myc. "We found that the BET inhibitor could actually kill leukemia stem cells. And without stem cells, the leukemia simply cannot grow," says Dr. Aifantis.

The researchers believe they can use the BET inhibitor to target pediatric and adult T-ALL leukemia. This work was supported by a grant from the National Cancer Institute.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one of the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of four hospitals – Tisch Hospital, its flagship acute care facility; the Hospital for Joint Diseases, recognized as one of the nation's leading hospitals dedicated to orthopaedics and rheumatology; Hassenfeld Pediatric Center, a comprehensive pediatric hospital supporting a full array of children's health services; and Rusk Rehabilitation, inpatient and outpatient therapy services devoted entirely to rehabilitation medicine – plus NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to http://www.NYULMC.org.

Christopher Rucas | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>