Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how a mutated protein outwits evolution and fuels leukemia

21.06.2013
Findings suggest a potent new therapeutic target for certain types of cancer

Scientists have discovered the survival secret to a genetic mutation that stokes leukemia cells, solving an evolutionary riddle and paving the way to a highly targeted therapy for leukemia.

In a paper published today in Cell, researchers at NYU Langone Medical Center describe how a mutated protein, called Fbxw7, behaves differently when expressed in cancer cells versus healthy cells. "Fbxw7 is essential for making blood cells, so the big mystery is why a mutation on a gene so important for survival would persist," says lead author Iannis Aifantis, PhD, chair of pathology at NYU Langone Medical Center and an Early Career Scientist at Howard Hughes Medical Institute. "What we've found is that the mutation affects cancerous cells but not healthy cells."

The Fbxw7 protein regulates the production of so-called hematopoietic stem cells, precursors that give rise to all types of blood cells. Without Fbxw7, the body loses the ability to produce blood and eventually succumbs to anemia. Scientists are only beginning to understand why mutated Fbxw7 appears in a significant portion of human tumors, including gastric, prostate, and some breast cancers. The mutation is especially prevalent in T-cell acute lymphoblastic leukemia, or T-ALL, a rare but lethal type of pediatric leukemia that causes the over-production of immature white blood cells.

In their experiments, Dr. Aifantis, working in collaboration with graduate student Bryan King and others, began by introducing mutated Fbxw7 into healthy blood stem cells in mice. "We thought the mutation would induce anemia, just as it does when Fbxw7 is deleted," says Dr. Aifantis. But to the researchers' surprise, nothing happened—the stem cells continued to manufacture blood cells.

When the researchers then introduced in mice the mutated Fbxw7 into leukemic blood stem cells—those that overproduce white blood cells and cause leukemia—the cancer accelerated. "We found that the mutation made leukemia stem cells much more aggressive," Dr. Aifantis says.

In follow-up experiments, the researchers showed that Fbxw7 binds to and degrades a protein called Myc, which fuels leukemic stem cells, and has long been associated with many other cancers and the recurrence of cancer after treatment. When Fbxw7 is mutated, Myc is left unchecked, they found, and the population of cancer stem cells swells. This insight also helps explain why healthy blood stem cells seem to "ignore" mutated Fbxw7. Unlike leukemic stem cells, healthy blood stem cells typically lie dormant until the body requires an emergency supply of blood and they rarely express Myc. "Normal blood stem cells express very little Myc because they are not cycling. A mutation does not affect the substrate because the substrate does not exist," says Dr. Aifantis. "Leukemia stem cells, however, do express Myc and Fbxw7 mutations increase its abundance."

The researchers then wondered if eliminating Myc could potentially block leukemia. Indeed, deleting the Myc gene in mice with leukemia depleted leukemic stem cells and stopped the growth of tumors. They achieved the same results in mice and human cell and bone marrow samples of T-ALL using a new class of cancer drug called a BET inhibitor that blocks Myc. "We found that the BET inhibitor could actually kill leukemia stem cells. And without stem cells, the leukemia simply cannot grow," says Dr. Aifantis.

The researchers believe they can use the BET inhibitor to target pediatric and adult T-ALL leukemia. This work was supported by a grant from the National Cancer Institute.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one of the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of four hospitals – Tisch Hospital, its flagship acute care facility; the Hospital for Joint Diseases, recognized as one of the nation's leading hospitals dedicated to orthopaedics and rheumatology; Hassenfeld Pediatric Center, a comprehensive pediatric hospital supporting a full array of children's health services; and Rusk Rehabilitation, inpatient and outpatient therapy services devoted entirely to rehabilitation medicine – plus NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to http://www.NYULMC.org.

Christopher Rucas | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>