Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover How 'Promiscuous Parasites' Hijack Host Immune Cells

23.09.2011
Toxoplasma gondii parasites can invade your bloodstream, break into your brain and prompt behavioral changes from recklessness to neuroticism. These highly contagious protozoa infect more than half the world's population, and most people's immune systems never purge the intruders.

Cornell researchers recently discovered how T. gondii evades our defenses by hacking immune cells, making it the first known parasite to control its host's immune system. Immunologists from the College of Veterinary Medicine published the study Sept. 8 in PLoS-Pathogens, describing a forced partnership between parasite and host that challenges common conceptions of how pathogens interact with the body.

"Toxoplasma is an especially promiscuous parasite," said Eric Denkers, professor of immunology. "It infects nearly all warm-blooded species, most nucleated cell types and much of the human population. Although it lives in vital brain and muscle tissues, it usually causes no obvious reaction. Infection can seriously harm people with weak immune systems, yet most hosts experience no overt symptoms because Toxoplasma has found a way to coerce cooperation."

Famous for its manipulative powers, T. gondii has been shown to alter the brain chemistry of rodents so that they fearlessly pursue cats. Cats eat the rodents, delivering the parasites to their breeding ground in feline intestines. Similar manipulations have surfaced in human studies linking T. gondii infections to behavioral and personality shifts, schizophrenia and population variations, including cultural differences and skewed sex ratios. Denkers' study maps T. gondii's newfound ability to manipulate cells in the immune system at the molecular level.

"We found that Toxoplasma quiets its host's alarm system by blocking immune cells from producing certain cytokines, proteins that stimulate inflammation," said Denkers. "Cytokines are double-edged swords: They summon the immune system's reinforcements, but if too many accumulate they can damage the body they're trying to defend. An unregulated immune response can kill you."

When immune cells meet intruders, they release cytokines that summon more immune cells, which produce more cytokines, rapidly causing inflammation. T. gondii must allow cytokines to trigger enough of an immune response to keep its own numbers in check and ensure host survival. But too many cytokines cause an overwhelming immune response that could damage the host or eliminate the parasites.

"Toxoplasma hijacks immune cells to enforce a mutually beneficial balance," Denkers said. "Until recently we thought it walled itself away inside cells without interacting with its environment. It's now clear that the parasite actively releases messages into cells that change cell behavior."

To prove this, Barbara Butcher, a senior research associate working with Denkers, exposed immune cells in the lab to bacterial factors that typically stimulate the release of inflammatory cytokines.

"Cells infected with Toxoplasma produced no messages to trigger inflammation," Denkers said. "Our colleagues at Stanford University found that Toxoplasma produces a specific protein called ROP16 to suppress inflammatory responses. Collaborating with parasitologists at Dartmouth Medical School, we found that Toxoplasma sends ROP16 to infiltrate communication channels in immune cells, causing them to lower cytokine production.

"We are excited to have found the first non-bacterial pathogen able to exert this kind of control," said Denkers. "If Toxoplasma can do this, maybe other parasites can too. This is the first case where the whole process of immune system manipulation is close to being completely mapped out at the molecular level."

That map may help steer future investigations into how pathogens interact with hosts, unveiling the inner workings of a spectrum of infectious diseases.

Joe Schwartz | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>