Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover How 'Promiscuous Parasites' Hijack Host Immune Cells

23.09.2011
Toxoplasma gondii parasites can invade your bloodstream, break into your brain and prompt behavioral changes from recklessness to neuroticism. These highly contagious protozoa infect more than half the world's population, and most people's immune systems never purge the intruders.

Cornell researchers recently discovered how T. gondii evades our defenses by hacking immune cells, making it the first known parasite to control its host's immune system. Immunologists from the College of Veterinary Medicine published the study Sept. 8 in PLoS-Pathogens, describing a forced partnership between parasite and host that challenges common conceptions of how pathogens interact with the body.

"Toxoplasma is an especially promiscuous parasite," said Eric Denkers, professor of immunology. "It infects nearly all warm-blooded species, most nucleated cell types and much of the human population. Although it lives in vital brain and muscle tissues, it usually causes no obvious reaction. Infection can seriously harm people with weak immune systems, yet most hosts experience no overt symptoms because Toxoplasma has found a way to coerce cooperation."

Famous for its manipulative powers, T. gondii has been shown to alter the brain chemistry of rodents so that they fearlessly pursue cats. Cats eat the rodents, delivering the parasites to their breeding ground in feline intestines. Similar manipulations have surfaced in human studies linking T. gondii infections to behavioral and personality shifts, schizophrenia and population variations, including cultural differences and skewed sex ratios. Denkers' study maps T. gondii's newfound ability to manipulate cells in the immune system at the molecular level.

"We found that Toxoplasma quiets its host's alarm system by blocking immune cells from producing certain cytokines, proteins that stimulate inflammation," said Denkers. "Cytokines are double-edged swords: They summon the immune system's reinforcements, but if too many accumulate they can damage the body they're trying to defend. An unregulated immune response can kill you."

When immune cells meet intruders, they release cytokines that summon more immune cells, which produce more cytokines, rapidly causing inflammation. T. gondii must allow cytokines to trigger enough of an immune response to keep its own numbers in check and ensure host survival. But too many cytokines cause an overwhelming immune response that could damage the host or eliminate the parasites.

"Toxoplasma hijacks immune cells to enforce a mutually beneficial balance," Denkers said. "Until recently we thought it walled itself away inside cells without interacting with its environment. It's now clear that the parasite actively releases messages into cells that change cell behavior."

To prove this, Barbara Butcher, a senior research associate working with Denkers, exposed immune cells in the lab to bacterial factors that typically stimulate the release of inflammatory cytokines.

"Cells infected with Toxoplasma produced no messages to trigger inflammation," Denkers said. "Our colleagues at Stanford University found that Toxoplasma produces a specific protein called ROP16 to suppress inflammatory responses. Collaborating with parasitologists at Dartmouth Medical School, we found that Toxoplasma sends ROP16 to infiltrate communication channels in immune cells, causing them to lower cytokine production.

"We are excited to have found the first non-bacterial pathogen able to exert this kind of control," said Denkers. "If Toxoplasma can do this, maybe other parasites can too. This is the first case where the whole process of immune system manipulation is close to being completely mapped out at the molecular level."

That map may help steer future investigations into how pathogens interact with hosts, unveiling the inner workings of a spectrum of infectious diseases.

Joe Schwartz | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>