Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover How 'Promiscuous Parasites' Hijack Host Immune Cells

23.09.2011
Toxoplasma gondii parasites can invade your bloodstream, break into your brain and prompt behavioral changes from recklessness to neuroticism. These highly contagious protozoa infect more than half the world's population, and most people's immune systems never purge the intruders.

Cornell researchers recently discovered how T. gondii evades our defenses by hacking immune cells, making it the first known parasite to control its host's immune system. Immunologists from the College of Veterinary Medicine published the study Sept. 8 in PLoS-Pathogens, describing a forced partnership between parasite and host that challenges common conceptions of how pathogens interact with the body.

"Toxoplasma is an especially promiscuous parasite," said Eric Denkers, professor of immunology. "It infects nearly all warm-blooded species, most nucleated cell types and much of the human population. Although it lives in vital brain and muscle tissues, it usually causes no obvious reaction. Infection can seriously harm people with weak immune systems, yet most hosts experience no overt symptoms because Toxoplasma has found a way to coerce cooperation."

Famous for its manipulative powers, T. gondii has been shown to alter the brain chemistry of rodents so that they fearlessly pursue cats. Cats eat the rodents, delivering the parasites to their breeding ground in feline intestines. Similar manipulations have surfaced in human studies linking T. gondii infections to behavioral and personality shifts, schizophrenia and population variations, including cultural differences and skewed sex ratios. Denkers' study maps T. gondii's newfound ability to manipulate cells in the immune system at the molecular level.

"We found that Toxoplasma quiets its host's alarm system by blocking immune cells from producing certain cytokines, proteins that stimulate inflammation," said Denkers. "Cytokines are double-edged swords: They summon the immune system's reinforcements, but if too many accumulate they can damage the body they're trying to defend. An unregulated immune response can kill you."

When immune cells meet intruders, they release cytokines that summon more immune cells, which produce more cytokines, rapidly causing inflammation. T. gondii must allow cytokines to trigger enough of an immune response to keep its own numbers in check and ensure host survival. But too many cytokines cause an overwhelming immune response that could damage the host or eliminate the parasites.

"Toxoplasma hijacks immune cells to enforce a mutually beneficial balance," Denkers said. "Until recently we thought it walled itself away inside cells without interacting with its environment. It's now clear that the parasite actively releases messages into cells that change cell behavior."

To prove this, Barbara Butcher, a senior research associate working with Denkers, exposed immune cells in the lab to bacterial factors that typically stimulate the release of inflammatory cytokines.

"Cells infected with Toxoplasma produced no messages to trigger inflammation," Denkers said. "Our colleagues at Stanford University found that Toxoplasma produces a specific protein called ROP16 to suppress inflammatory responses. Collaborating with parasitologists at Dartmouth Medical School, we found that Toxoplasma sends ROP16 to infiltrate communication channels in immune cells, causing them to lower cytokine production.

"We are excited to have found the first non-bacterial pathogen able to exert this kind of control," said Denkers. "If Toxoplasma can do this, maybe other parasites can too. This is the first case where the whole process of immune system manipulation is close to being completely mapped out at the molecular level."

That map may help steer future investigations into how pathogens interact with hosts, unveiling the inner workings of a spectrum of infectious diseases.

Joe Schwartz | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>