Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop New Tool for Gene Delivery

28.01.2010
Researchers at Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts have developed a new tool for gene therapy that significantly increases gene delivery to cells in the retina compared to other carriers and DNA alone, according to a study published in the January issue of The Journal of Gene Medicine. The tool, a peptide called PEG-POD, provides a vehicle for therapeutic genes and may help researchers develop therapies for degenerative eye disorders such as retinitis pigmentosa and age-related macular degeneration.

“For the first time, we have demonstrated an efficient way to transfer DNA into cells without using a virus, currently the most common means of DNA delivery. Many non-viral vectors for gene therapy have been developed but few, if any, work in post-mitotic tissues such as the retina and brain. Identifying effective carriers like PEG-POD brings us closer to gene therapy to protect the retinal cells from degeneration,” said senior author Rajendra Kumar-Singh, PhD, associate professor of ophthalmology and adjunct associate professor of neuroscience at Tufts University School of Medicine (TUSM) and member of the genetics; neuroscience; and cell, molecular, and developmental biology program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts.

Safe and effective delivery of therapeutic genes has been a major obstacle in gene therapy research. Deactivated viruses have frequently been used, but concerns about the safety of this method have left scientists seeking new ways to get therapeutic genes into cells.

“We think the level of gene expression seen with PEG-POD may be enough to protect the retina from degeneration, slowing the progression of eye disorders and we have preliminary evidence that this is indeed the case,” said co-author Siobhan Cashman, PhD, research assistant professor in the department of ophthalmology at TUSM and member of Kumar-Singh’s lab.

“What makes PEG-POD especially promising is that it will likely have applications beyond the retina. Because PEG-POD protects DNA from damage in the bloodstream, it may pave the way for gene therapy treatments that can be administered through an IV and directed to many other parts of the body,” said Kumar-Singh.

Kumar-Singh and colleagues used an in vivo model to compare the effectiveness of PEG-POD with two other carriers (PEG-TAT and PEG-CK30) and a control (injections of DNA alone).

“Gene expression in specimens injected with PEG-POD was 215 times greater than the control. While all three carriers delivered DNA to the retinal cells, PEG-POD was by far the most effective,” said first author Sarah Parker Read, an MD/PhD candidate at TUSM and Sackler and member of Kumar-Singh’s lab.

Age-related macular degeneration, which results in a loss of sharp, central vision, is the number one cause of vision loss in Americans age 60 and older. Retinitis pigmentosa, an inherited condition resulting in retinal damage, affects approximately 1 in 4,000 individuals in the United States.

This study was supported by grants from the National Eye Institute of the National Institutes of Health, the Foundation for Fighting Blindness, The Ellison Foundation, The Virginia B. Smith Trust, the Lions Eye Foundation, and Research to Prevent Blindness. Sarah Parker Read is part of the Sackler/TUSM Medical Scientist Training Program, which is funded by the National Institute of General Medical Sciences, part of the National Institutes of Health.

Read SP, Cashman SM, Kumar-Singh R. The Journal of Gene Medicine. 2010 (January). 12(1): 86-96. “A poly(ethylene) glycolylated peptide for ocular delivery compacts DNA into nanoparticles for gene delivery to post-mitotic tissues in vivo.” Doi: 10.1002/jgm.1415

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its impact on the advancement of medical science.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at the Tufts University School of Medicine, the Sackler School of Graduate Biomedical Sciences, or another Tufts health sciences researcher, please contact Siobhan Gallagher at 617-636-6586 or, for this study, Lindsay Peterson at 617-636-2789.

Siobhan Gallagher | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>