Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop synthetic compound that may lead to drugs to fight pancreatic, lung cancer

10.03.2011
Researchers at UT Southwestern Medical Center have identified a chemical compound that may eventually lead to a drug that fights cancers that are dependent on a particular anti-viral enzyme for growth.

The researchers are testing the compound's effectiveness at fighting tumors in mice. If it is successful, they will then work to develop a drug based on the compound to combat pancreatic and non-small cell lung cancer, two cancer types in which this particular enzyme, TBK-1, often is required for cancer cell survival.

"Our prediction is that TBK-1 is a good pharmacological intervention target for a subset of lung and pancreas cancers that are addicted to the activity of this enzyme. We believe there is a large population of cancer patients that could respond to inhibition of this activity," said Dr. Michael White, professor of cell biology and senior author of the study in the Feb. 18 issue of Molecular Cell.

The investigation, which lasted three and a half years, revealed how activation of the natural virus-fighting protein TBK-1 is hijacked in cancer cells to support growth and survival.

More than 250,000 compounds were screened to find one that would inhibit the enzyme's cancer-protection mechanism. The most effective, a compound called 6-aminopyrazolopyrimidine developed in collaboration with pharmaceutical company Amgen, blocked TBK-1's effects in 40 percent to 50 percent of the non-small cell lung cancer and pancreatic cancer tissue cultures tested, reducing cancer growth. TBK-1 is activated by the Ras family of oncogenes, which are mutated in 40 percent of lung cancers and 90 percent of pancreatic cancers.

"We found a biological activity that some cancer cells need to be able to survive, and we found a way to turn it off," said Dr. White.

The next step, he said, would be ascertaining in rodents whether 6-aminopyrazolopyrimidine can permeate tumors, "hit the target and be effective." If the compound continues to demonstrate efficacy, researchers would begin work to develop a drug with the compound's properties for further testing.

The compound appears to migrate into all tissues of studied mice, but the UT Southwestern researchers don't know yet if it will penetrate solid tumors in the animal, "which is an incredibly important step in evaluating chemicals as drug leads," Dr. White said.

"We've illuminated the dark matter of regulation of an incredibly important oncogenic survival pathway. We've found a new regulatory arm of this pathway, and we've discovered you can inhibit it pharmacologically. That's target validation. The next step is to translate that target validation into development of a medicine," he said.

Other UT Southwestern researchers involved in the study were lead author Yi-Hung Ou, graduate student in cancer biology; Michael Torres and Rosalyn Ram, student research assistants in cancer biology; Dr. Tzuling Cheng, postdoctoral researcher in pediatrics; Dr. Christina Roland, surgery resident; and Dr. Rolf Brekken, associate professor of surgery and pharmacology. Researchers from Hybrigenics of Paris and Amgen Inc. of Thousand Oaks, Calif., also participated.

The work was supported by the National Institutes of Health and the Welch Foundation.

Visit www.utsouthwestern.org/cancer to learn more about UT Southwestern's clinical services in cancer.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Debbie Bolles | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>