Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers develop synthetic compound that may lead to drugs to fight pancreatic, lung cancer

Researchers at UT Southwestern Medical Center have identified a chemical compound that may eventually lead to a drug that fights cancers that are dependent on a particular anti-viral enzyme for growth.

The researchers are testing the compound's effectiveness at fighting tumors in mice. If it is successful, they will then work to develop a drug based on the compound to combat pancreatic and non-small cell lung cancer, two cancer types in which this particular enzyme, TBK-1, often is required for cancer cell survival.

"Our prediction is that TBK-1 is a good pharmacological intervention target for a subset of lung and pancreas cancers that are addicted to the activity of this enzyme. We believe there is a large population of cancer patients that could respond to inhibition of this activity," said Dr. Michael White, professor of cell biology and senior author of the study in the Feb. 18 issue of Molecular Cell.

The investigation, which lasted three and a half years, revealed how activation of the natural virus-fighting protein TBK-1 is hijacked in cancer cells to support growth and survival.

More than 250,000 compounds were screened to find one that would inhibit the enzyme's cancer-protection mechanism. The most effective, a compound called 6-aminopyrazolopyrimidine developed in collaboration with pharmaceutical company Amgen, blocked TBK-1's effects in 40 percent to 50 percent of the non-small cell lung cancer and pancreatic cancer tissue cultures tested, reducing cancer growth. TBK-1 is activated by the Ras family of oncogenes, which are mutated in 40 percent of lung cancers and 90 percent of pancreatic cancers.

"We found a biological activity that some cancer cells need to be able to survive, and we found a way to turn it off," said Dr. White.

The next step, he said, would be ascertaining in rodents whether 6-aminopyrazolopyrimidine can permeate tumors, "hit the target and be effective." If the compound continues to demonstrate efficacy, researchers would begin work to develop a drug with the compound's properties for further testing.

The compound appears to migrate into all tissues of studied mice, but the UT Southwestern researchers don't know yet if it will penetrate solid tumors in the animal, "which is an incredibly important step in evaluating chemicals as drug leads," Dr. White said.

"We've illuminated the dark matter of regulation of an incredibly important oncogenic survival pathway. We've found a new regulatory arm of this pathway, and we've discovered you can inhibit it pharmacologically. That's target validation. The next step is to translate that target validation into development of a medicine," he said.

Other UT Southwestern researchers involved in the study were lead author Yi-Hung Ou, graduate student in cancer biology; Michael Torres and Rosalyn Ram, student research assistants in cancer biology; Dr. Tzuling Cheng, postdoctoral researcher in pediatrics; Dr. Christina Roland, surgery resident; and Dr. Rolf Brekken, associate professor of surgery and pharmacology. Researchers from Hybrigenics of Paris and Amgen Inc. of Thousand Oaks, Calif., also participated.

The work was supported by the National Institutes of Health and the Welch Foundation.

Visit to learn more about UT Southwestern's clinical services in cancer.

This news release is available on our World Wide Web home page at

To automatically receive news releases from UT Southwestern via e-mail, subscribe at

Debbie Bolles | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>