Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop synthetic compound that may lead to drugs to fight pancreatic, lung cancer

10.03.2011
Researchers at UT Southwestern Medical Center have identified a chemical compound that may eventually lead to a drug that fights cancers that are dependent on a particular anti-viral enzyme for growth.

The researchers are testing the compound's effectiveness at fighting tumors in mice. If it is successful, they will then work to develop a drug based on the compound to combat pancreatic and non-small cell lung cancer, two cancer types in which this particular enzyme, TBK-1, often is required for cancer cell survival.

"Our prediction is that TBK-1 is a good pharmacological intervention target for a subset of lung and pancreas cancers that are addicted to the activity of this enzyme. We believe there is a large population of cancer patients that could respond to inhibition of this activity," said Dr. Michael White, professor of cell biology and senior author of the study in the Feb. 18 issue of Molecular Cell.

The investigation, which lasted three and a half years, revealed how activation of the natural virus-fighting protein TBK-1 is hijacked in cancer cells to support growth and survival.

More than 250,000 compounds were screened to find one that would inhibit the enzyme's cancer-protection mechanism. The most effective, a compound called 6-aminopyrazolopyrimidine developed in collaboration with pharmaceutical company Amgen, blocked TBK-1's effects in 40 percent to 50 percent of the non-small cell lung cancer and pancreatic cancer tissue cultures tested, reducing cancer growth. TBK-1 is activated by the Ras family of oncogenes, which are mutated in 40 percent of lung cancers and 90 percent of pancreatic cancers.

"We found a biological activity that some cancer cells need to be able to survive, and we found a way to turn it off," said Dr. White.

The next step, he said, would be ascertaining in rodents whether 6-aminopyrazolopyrimidine can permeate tumors, "hit the target and be effective." If the compound continues to demonstrate efficacy, researchers would begin work to develop a drug with the compound's properties for further testing.

The compound appears to migrate into all tissues of studied mice, but the UT Southwestern researchers don't know yet if it will penetrate solid tumors in the animal, "which is an incredibly important step in evaluating chemicals as drug leads," Dr. White said.

"We've illuminated the dark matter of regulation of an incredibly important oncogenic survival pathway. We've found a new regulatory arm of this pathway, and we've discovered you can inhibit it pharmacologically. That's target validation. The next step is to translate that target validation into development of a medicine," he said.

Other UT Southwestern researchers involved in the study were lead author Yi-Hung Ou, graduate student in cancer biology; Michael Torres and Rosalyn Ram, student research assistants in cancer biology; Dr. Tzuling Cheng, postdoctoral researcher in pediatrics; Dr. Christina Roland, surgery resident; and Dr. Rolf Brekken, associate professor of surgery and pharmacology. Researchers from Hybrigenics of Paris and Amgen Inc. of Thousand Oaks, Calif., also participated.

The work was supported by the National Institutes of Health and the Welch Foundation.

Visit www.utsouthwestern.org/cancer to learn more about UT Southwestern's clinical services in cancer.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Debbie Bolles | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>