Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers determine how inflammatory cells function, setting stage for future remedies

A research team led by investigators at New York University and NYU School of Medicine has determined how cells that cause inflammatory ailments, such as Crohn's disease, multiple sclerosis, and arthritis, differentiate from stem cells and ultimately affect the clinical outcome of these diseases.

"We've found that hundreds of new genes are involved in the function and development of these cells," said co-author Richard Bonneau, an associate professor at New York University's Center for Genomics and Systems Biology and the Courant Institute of Mathematical Sciences. "This expansion in our understanding can be used as a framework for designing new therapies to combat a range of ailments where the immune system attacks self."

These cells, called T-cells by immunologists, play a role in fighting off infection, but can also induce inflammation and other processes that damage tissues and contribute to several common inflammatory diseases. T-cells are also key cell types in new immune-cell based therapies for fighting cancer. There are many types of T-cells, and how they differentiate from stem cells in the human body lies at the center of understanding several diseases.

"We have been striving for several years to understand what makes inflammatory T-lymphocytes special," said lead investigator Dan Littman, MD, PhD, the Helen L. and Martin S. Kimmel Professor of Molecular Immunology and a professor of pathology, microbiology and molecular pathogenesis at NYU School of Medicine and a faculty member of the Skirball Institute on Biomolecular Medicine. "They can protect us from microbes, but they also have the potential to cause autoimmune disease.

"We were fortunate to be able to bring together a team of immunologists, computational biologists, and genomics experts to begin to solve this puzzle. Whereas before we only knew of a handful of genes that influence the function of these cells, we now know of hundreds of new ones that can serve as a resource for further studies by us and other laboratories. Our hope is that some of these new molecules will be the Achilles heel that we can target to treat these diseases."

The findings, which are reported in the latest issue of the journal Cell, lay the groundwork for understanding how these cells regulate their genomes through a regulatory network that connects many environmental stimuli to a large number of genes and their interactions. This large network model is essentially the brain that T-cell precursors, or stem cells, use to decide what they want to be when they grow up. Specifically, a network model can be used simulate what inhibiting a gene with a drug would do to different T-cells and, in this way, aid the development of new therapeutic measures to address these afflictions.

The study focused on T-helper 17 cells (Th17) and how they regulate the synthesis of gene products from thousands of regions of the chromosome. Th17 cells have previously been implicated in inflammatory diseases. Other studies have also identified hundreds of genes that roles in pro-inflammatory diseases. This new study places these implicated genes on a timeline of cellular development and ultimately puts them together in an integrated model of how genes interact.

To explore the inner workings of these cells, the researchers used a systems biology approach, which focuses measuring multiple biomolecules and capturing multiple interactions within an organism to understand how it functions. For example, each of the 450 data sets integrated in this study contained measurements of gene expression, chromatin structure, or gene-chromosome interaction that spanned millions of locations along the genome. This holistic method offers a broader understanding of interconnected molecular phenomena essential to running life's program—a process similar to studying an entire automobile while it functions rather than separately studying the headlights, brakes, or steering column.

To extract meaningful results from this very large data set, the researchers employed statistical techniques to uncover the network model from the large amount of data. To verify the accuracy of the computer modeling, further laboratory experiments were conducted using mice. Although the study was carried out in mice, the researchers found that their work could offer explanations as to why a large number of genes are associated with several human inflammatory diseases. The researchers' computer models identified candidate genes that influence the expression of more than 2,000 genes and play a significant role in the regulation of Th17 cells. They found that the core of this network was significantly enriched for the genes that human geneticists have found to be associated with pro-inflammatory disease. These genes serve as cogs in the regulation of expression or suppression of genes in Th17 cells and are potential leads for developing new therapeutic approaches to modulating inflammation.

The study also included researchers from: HudsonAlpha Institute for Biotechnology; the Max Delbruck Center for Molecular Medicine in Berlin; the Spanish National Cancer Research Centre in Madrid; the Washington University in St. Louis School of Medicine; and the Howard Hughes Medical Institute.

The study was supported by grants from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, under the American Recovery and Reinvestment Act. Support was provided by NIH grants RC1 AI087266 and RC4 AI092765, fellowships from the Leukemia and Lymphoma Society, the Crohn's and Colitis Foundation of America, and the National Arthritis Research Foundation, as well as by Irvington Institute Fellowships from the Cancer Research Institute.

James Devitt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>