Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Design 'Green' Extraction Method for Antioxidants in Grape Skins

12.09.2011
Method uses grape waste products, pressurized water

University of Arkansas researchers are taking grape skins left from making wine and juice and using “green” processes to extract powerful antioxidants that can be used in health products.

“The goal is to get a value-added food supplement product,” said Jerry King, professor of chemical engineering at the University of Arkansas. Beverages such as grape juice and wine contain natural antioxidants, which have anti-inflammatory properties when ingested. However, while juices and wine contain some of the antioxidants, up to 50 percent remain in the waste material left behind when the skins, stems and seeds get filtered away. “These are valuable components that don’t go into the juice or wine,” King said.

Grape waste means business: The United States generates about 15 million tons of grape waste each year, and most of it currently ends up as compost or animal feed. Extracting products with potential health benefits from the waste has commercial interest.

However, traditional extraction methods use organic solvents, which can be expensive, toxic and difficult to dispose. King and his colleague, food science professor Luke Howard, received $350,000 over four years from the U.S. Department of Agriculture as part of an interdepartmental collaboration to employ a method using pressurized water to extract the antioxidants. For the past four years, they have worked with graduate students Jeana Monrad and Keerthi Srinivas to optimize these extraction methods using a technique called subcritical water processing.

To do this, scientists heat the water under pressure, which allows it to remain liquid at high temperatures and act as an extraction solvent. They also used organic acids to isolate certain types of antioxidants.

The researchers faced several challenges with this method, because natural antioxidants can break down at high temperatures. They developed a process of continuous extraction that allows for high flow rates to minimize antioxidant degradation and maximize their breakdown.

The researchers created an extraction method that not only increases the efficiency of extraction over ethanol alone, but also produces antioxidant compounds that are smaller in size, which are more effectively adsorbed by the body.

CONTACTS:
Jerry King, professor. chemical engineering
College of Engineering
479-575-3835, jwking1@uark.edu
Luke Howard, professor, food science
Dale Bumpers College of Agricultural, Food and Life Science
479-575-2978, lukeh@uark.edu
Melissa Lutz Blouin, senior director of academic communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Reptile vocalization is surprisingly flexible
30.05.2017 | Max-Planck-Institut für Ornithologie

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>