Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Design 'Green' Extraction Method for Antioxidants in Grape Skins

12.09.2011
Method uses grape waste products, pressurized water

University of Arkansas researchers are taking grape skins left from making wine and juice and using “green” processes to extract powerful antioxidants that can be used in health products.

“The goal is to get a value-added food supplement product,” said Jerry King, professor of chemical engineering at the University of Arkansas. Beverages such as grape juice and wine contain natural antioxidants, which have anti-inflammatory properties when ingested. However, while juices and wine contain some of the antioxidants, up to 50 percent remain in the waste material left behind when the skins, stems and seeds get filtered away. “These are valuable components that don’t go into the juice or wine,” King said.

Grape waste means business: The United States generates about 15 million tons of grape waste each year, and most of it currently ends up as compost or animal feed. Extracting products with potential health benefits from the waste has commercial interest.

However, traditional extraction methods use organic solvents, which can be expensive, toxic and difficult to dispose. King and his colleague, food science professor Luke Howard, received $350,000 over four years from the U.S. Department of Agriculture as part of an interdepartmental collaboration to employ a method using pressurized water to extract the antioxidants. For the past four years, they have worked with graduate students Jeana Monrad and Keerthi Srinivas to optimize these extraction methods using a technique called subcritical water processing.

To do this, scientists heat the water under pressure, which allows it to remain liquid at high temperatures and act as an extraction solvent. They also used organic acids to isolate certain types of antioxidants.

The researchers faced several challenges with this method, because natural antioxidants can break down at high temperatures. They developed a process of continuous extraction that allows for high flow rates to minimize antioxidant degradation and maximize their breakdown.

The researchers created an extraction method that not only increases the efficiency of extraction over ethanol alone, but also produces antioxidant compounds that are smaller in size, which are more effectively adsorbed by the body.

CONTACTS:
Jerry King, professor. chemical engineering
College of Engineering
479-575-3835, jwking1@uark.edu
Luke Howard, professor, food science
Dale Bumpers College of Agricultural, Food and Life Science
479-575-2978, lukeh@uark.edu
Melissa Lutz Blouin, senior director of academic communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>