Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Decode Workings of Mysterious, but Critical TB Drug

12.08.2011
For nearly 60 years, Pyrazinamide (PZA) has been used in conjunction with other medications to treat tuberculosis (TB), but scientists did not fully understand how the drug killed TB bacteria.

PZA plays a unique role in shortening the duration of current TB therapy to six months and is used frequently to treat multi-drug resistant TB. A new study, led by researchers at the Johns Hopkins Bloomberg School of Public Health, suggests that PZA binds to a specific protein named RpsA and inhibits trans-translation, a process that enables the TB bacteria to survive under stressful conditions. Their findings, published in the August 11, 2011 edition of Science Express, could lead to new targets for developing more effective anti-TB drugs.

“PZA is a peculiar and unconventional drug that works very differently from common antibiotics that mainly kill growing bacteria. PZA primarily kills non-growing bacteria called persisters that are not susceptible to common antibiotics,” said Ying Zhang, MD, PhD, senior author of the study and professor in the Bloomberg School’s W. Harry Feinstone Department of Molecular Microbiology and Immunology. “While PZA works very well in the body against TB, it has no effect on the growing bacteria in a test tube, which has made it difficult to understand just how it works.”

PZA is converted to the active form of pyrazinoic acid (POA) by an amidase enzyme (PncA) also identified by Zhang’s group in 1996. Through a series of experiments, Zhang and his colleagues determined that POA binds to ribosomal protein S1 (RpsA), a vital protein in the trans-translation process. Trans-translation is essential for cell survival under stress conditions. Partially synthesized proteins which are produced under stress conditions are toxic to the bacterial cell. It has developed a mechanism called trans-translation to add a short peptide tag to the partially produced toxic proteins so they can be recognized for degradation by proteases to relieve the toxicity. Inhibition of trans-translation by PZA explains why the drug can eradicate persisting organisms, and thereby shortening the therapy.

“There is renewed interest in PZA because it is the only drug that cannot be replaced among the current TB drugs without compromising the efficacy of therapy. The identification of the drug target RpsA not only offers a new resistance mechanism to PZA but also opens up a way for designing a new generation of antibiotics that target persister bacteria for improved treatment of chronic and persistent infections including TB,” said Zhang.

The study was conducted in collaboration with researchers from Fudan University and the National Institute of Allergy and Infectious Diseases (NIAID). The authors of “Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis” are Wanliang Shi, Xuelian Zhang, Xin Jiang, Haiming Yuan, Jong Seok Lee, Clifton E. Barry, 3rd, Honghai Wang, Wenhong Zhang, and Ying Zhang.

Funding for the research was provided by NIAID, part of the National Institutes of Health, and the National Key Technologies Research and Development Program of China.

Media contacts for Johns Hopkins Bloomberg School of Public Health: Tim Parsons at 410-955-6878 or Natalie Wood-Wright at 410-614-6029 or nwoodwri@jhsph.edu.

Natalie Wood-Wright | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>