Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Decode Workings of Mysterious, but Critical TB Drug

12.08.2011
For nearly 60 years, Pyrazinamide (PZA) has been used in conjunction with other medications to treat tuberculosis (TB), but scientists did not fully understand how the drug killed TB bacteria.

PZA plays a unique role in shortening the duration of current TB therapy to six months and is used frequently to treat multi-drug resistant TB. A new study, led by researchers at the Johns Hopkins Bloomberg School of Public Health, suggests that PZA binds to a specific protein named RpsA and inhibits trans-translation, a process that enables the TB bacteria to survive under stressful conditions. Their findings, published in the August 11, 2011 edition of Science Express, could lead to new targets for developing more effective anti-TB drugs.

“PZA is a peculiar and unconventional drug that works very differently from common antibiotics that mainly kill growing bacteria. PZA primarily kills non-growing bacteria called persisters that are not susceptible to common antibiotics,” said Ying Zhang, MD, PhD, senior author of the study and professor in the Bloomberg School’s W. Harry Feinstone Department of Molecular Microbiology and Immunology. “While PZA works very well in the body against TB, it has no effect on the growing bacteria in a test tube, which has made it difficult to understand just how it works.”

PZA is converted to the active form of pyrazinoic acid (POA) by an amidase enzyme (PncA) also identified by Zhang’s group in 1996. Through a series of experiments, Zhang and his colleagues determined that POA binds to ribosomal protein S1 (RpsA), a vital protein in the trans-translation process. Trans-translation is essential for cell survival under stress conditions. Partially synthesized proteins which are produced under stress conditions are toxic to the bacterial cell. It has developed a mechanism called trans-translation to add a short peptide tag to the partially produced toxic proteins so they can be recognized for degradation by proteases to relieve the toxicity. Inhibition of trans-translation by PZA explains why the drug can eradicate persisting organisms, and thereby shortening the therapy.

“There is renewed interest in PZA because it is the only drug that cannot be replaced among the current TB drugs without compromising the efficacy of therapy. The identification of the drug target RpsA not only offers a new resistance mechanism to PZA but also opens up a way for designing a new generation of antibiotics that target persister bacteria for improved treatment of chronic and persistent infections including TB,” said Zhang.

The study was conducted in collaboration with researchers from Fudan University and the National Institute of Allergy and Infectious Diseases (NIAID). The authors of “Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis” are Wanliang Shi, Xuelian Zhang, Xin Jiang, Haiming Yuan, Jong Seok Lee, Clifton E. Barry, 3rd, Honghai Wang, Wenhong Zhang, and Ying Zhang.

Funding for the research was provided by NIAID, part of the National Institutes of Health, and the National Key Technologies Research and Development Program of China.

Media contacts for Johns Hopkins Bloomberg School of Public Health: Tim Parsons at 410-955-6878 or Natalie Wood-Wright at 410-614-6029 or nwoodwri@jhsph.edu.

Natalie Wood-Wright | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>