Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Decode Workings of Mysterious, but Critical TB Drug

12.08.2011
For nearly 60 years, Pyrazinamide (PZA) has been used in conjunction with other medications to treat tuberculosis (TB), but scientists did not fully understand how the drug killed TB bacteria.

PZA plays a unique role in shortening the duration of current TB therapy to six months and is used frequently to treat multi-drug resistant TB. A new study, led by researchers at the Johns Hopkins Bloomberg School of Public Health, suggests that PZA binds to a specific protein named RpsA and inhibits trans-translation, a process that enables the TB bacteria to survive under stressful conditions. Their findings, published in the August 11, 2011 edition of Science Express, could lead to new targets for developing more effective anti-TB drugs.

“PZA is a peculiar and unconventional drug that works very differently from common antibiotics that mainly kill growing bacteria. PZA primarily kills non-growing bacteria called persisters that are not susceptible to common antibiotics,” said Ying Zhang, MD, PhD, senior author of the study and professor in the Bloomberg School’s W. Harry Feinstone Department of Molecular Microbiology and Immunology. “While PZA works very well in the body against TB, it has no effect on the growing bacteria in a test tube, which has made it difficult to understand just how it works.”

PZA is converted to the active form of pyrazinoic acid (POA) by an amidase enzyme (PncA) also identified by Zhang’s group in 1996. Through a series of experiments, Zhang and his colleagues determined that POA binds to ribosomal protein S1 (RpsA), a vital protein in the trans-translation process. Trans-translation is essential for cell survival under stress conditions. Partially synthesized proteins which are produced under stress conditions are toxic to the bacterial cell. It has developed a mechanism called trans-translation to add a short peptide tag to the partially produced toxic proteins so they can be recognized for degradation by proteases to relieve the toxicity. Inhibition of trans-translation by PZA explains why the drug can eradicate persisting organisms, and thereby shortening the therapy.

“There is renewed interest in PZA because it is the only drug that cannot be replaced among the current TB drugs without compromising the efficacy of therapy. The identification of the drug target RpsA not only offers a new resistance mechanism to PZA but also opens up a way for designing a new generation of antibiotics that target persister bacteria for improved treatment of chronic and persistent infections including TB,” said Zhang.

The study was conducted in collaboration with researchers from Fudan University and the National Institute of Allergy and Infectious Diseases (NIAID). The authors of “Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis” are Wanliang Shi, Xuelian Zhang, Xin Jiang, Haiming Yuan, Jong Seok Lee, Clifton E. Barry, 3rd, Honghai Wang, Wenhong Zhang, and Ying Zhang.

Funding for the research was provided by NIAID, part of the National Institutes of Health, and the National Key Technologies Research and Development Program of China.

Media contacts for Johns Hopkins Bloomberg School of Public Health: Tim Parsons at 410-955-6878 or Natalie Wood-Wright at 410-614-6029 or nwoodwri@jhsph.edu.

Natalie Wood-Wright | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>