Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create first molecule blocks key component of cancer genes' on-off switch

27.09.2010
In the quest to arrest the growth and spread of tumors, there have been many attempts to get cancer genes to ignore their internal instruction manual. In a new study, a team led by Dana-Farber Cancer Institute scientists has created the first molecule able to prevent cancer genes from "hearing" those instructions, stifling the cancer process at its root.

The study, published online by the journal Nature, demonstrates that proteins issuing stop and start commands to a cancer gene – known as epigenetic "reader" proteins – can be targeted for future cancer therapies. The research is particularly relevant to a rare but devastating cancer of children and young adults known as NUT midline carcinoma (NMC) – a disease so obstinate that no potential therapy for it has ever reached the stage of being tested in a clinical trial.

"In recent years, it has become clear that being able to control gene activity in cancer – manipulating which genes are 'on' or 'off' – can be a high-impact approach to the disease," says the study's senior author, James Bradner, MD, of Dana-Farber. "If you can switch off a cancer cell's growth genes, the cell will die. Alternatively, switching on a tissue gene can cause a cancer cell to become a more normal tissue cell."

In this study, Bradner's lab synthesized a molecule that has both effects: by blocking a specific abnormal protein in NUT midline carcinoma cells, it stops them from dividing so prolifically and makes them 'forget' they're cancer cells and start appearing more like normal cells.

The assembled molecule affects the cell's multi-layered apparatus for controlling gene activity, a set of structures collectively known as the epigenome. Vast portions of each gene play a regulatory role, dictating whether the gene is active, busily sending orders for new proteins, or inactive, and temporarily at rest. The gene's DNA is packaged in a substance called chromatin, which is the slate on which instructions to begin or cease activity are inscribed.

The instructions themselves take the form of "bookmarks," substances placed on the chromatin by so-called epigenetic "writer" proteins. Another group of epigenetic proteins, known as "erasers," are able to remove the bookmarks. Both types of proteins have successfully been disabled by scientists, using molecules made in the lab or taken from nature. Their success has sparked intense interest in the development of anti-cancer therapies that work by blocking such proteins.

A third variety of epigenetic proteins – potentially the most appealing as therapeutic targets, because they switch genes on or off by "reading" the bookmarks – has received scant scientific attention. Bradner and his colleagues turned to this little-explored corner of biology by focusing on NMC cells.

The disease is caused by a chromosomal "translocation," in which two genes from different chromosomes become connected and give rise to an abnormal, fused protein known as BRD4-NUT. A review of the scientific literature suggested that some members of the benzodiazepine family of drugs, which includes Valium, Xanax and Ativan, are active against "bromodomain" proteins such as BRD4. With that as a clue, Bradner and his Dana-Farber colleague Jun Qi, PhD, created an array of molecules to see if any inhibited a "reader" protein of the BRD4-NUT gene. One did, quite convincingly – a hybrid molecule, which researchers named JQ1, for Qi.

The investigators worked with researchers in the U.S. and overseas to learn more about the properties of JQ1 and how it works in cells. Stefan Knapp, PhD, of Oxford University in England, provided crystal-clear images of the molecule bound to a protein; Olaf Wiest, PhD, of the University of Notre Dame, showed that the molecule is less flexible in the presence of a protein, explaining why it so effectively blocks the protein; and Andrew Kung, MD, PhD, of Dana-Farber, engineered animal models in which the molecule could be tested against NMC tumors.

The animal studies were especially encouraging. Investigators transplanted NMC cells from patients into laboratory mice, which were then given the JQ1 molecule.

"The activity of the molecule was remarkable," says Bradner, who is also an associate member of the Chemical Biology Program at the Broad Institute of Harvard and MIT. "All the mice that received JQ1 lived; all that did not, died."

For now, JQ1's main utility is as a probe for better understanding the biology underlying NUT midline carcinoma. Bradner, Qi and their colleagues are tweaking the molecule to maximize its effectiveness as a BRD4-NUT stopper. Eventually, it, or a similar molecule, could be the basis for the first effective therapy against NMC.

"The disease tends to arise in the chest, head, or neck, along the vertical centerline of the body, with aggressive tumor growth and metastasis," Bradner explains. "Patients may have a brief response to chemotherapy, but they eventually succumb to the spread of the disease."

Unlike most cancers, NMC's tissue of origin isn't known. It is a disease defined entirely by its genetic signature – the presence of the translocated gene BRD4-NUT. Prior to its genetic identification by Christopher French, MD, of Brigham and Women's Hospital and a study co-author, NMC wasn't recognized as a distinct disease.

"This research further illustrates the promise of personalized medicine," Bradner remarks, "which is the ability to deliver selected molecules to cancer-causing proteins to stop the cancer process while producing a minimum of residual side effects. The development of JQ1 or similar molecule into a drug may produce the first therapy specifically designed for patients with NMC."

In addition to Qi, the study's other lead authors are Panagis Filippakopoulos and Sarah Picaud, of Oxford University, England. The paper's co-authors include William Smith, Elizabeth Morse, Michael McKeown, Yuchuan Wang, PhD, Amanda Christie, and Nathan West, of Dana-Farber; Oleg Fedorov, Tracey Keates, Ildiko Felletar, Martin Philpott, Shonagh Munro, Tom Heightman, and Nicholas La Thangue, of Oxford University; and Tyler Hickman, Michael Cameron, and Brian Schwartz, PhD, of Brigham and Women's Hospital.

The study was supported in part by the Chemistry-Biochemistry-Biology Interface Program at the University of Notre Dame, Dana-Farber/Harvard Cancer Center, the National Institute of General Medical Sciences, the National Institutes of Health, the Burroughs Welcome Fund, and the Leukemia & Lymphoma Society.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding.

Teresa Herbert | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht What Makes Stem Cells into Perfect Allrounders
27.06.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Safeguarding sustainability through forest certification mapping

27.06.2017 | Ecology, The Environment and Conservation

X-ray experiments reveal two different types of water

27.06.2017 | Life Sciences

Ahead of the Curve

27.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>