Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create drug to keep tumor growth switched off

12.02.2010
A novel – and rapid – anti-cancer drug development strategy has resulted in a new drug that stops kidney and pancreatic tumors from growing in mice. Researchers at the Moores Cancer Center at the University of California, San Diego, have found a drug that binds to a molecular "switch" found in cancer cells and cancer-associated blood vessels to keep it in the "off" position.

"We locked the kinase switch in the off position in cancer and in tumor-associated blood vessels," which differs from the way current inhibitors attempt to block active kinases, said David Cheresh, PhD, professor and vice chair of pathology at the UCSD School of Medicine and the Moores UCSD Cancer Center, who led the work.

The new approach employs scaffold-based chemistry combined with supercomputer technology, allowing for rapid screening and development of drugs that are more selective for the tumor. The development and screening processes were used to identify potential drug candidates able to halt a growth signaling enzyme, or kinase, which can foster tumor blood vessel and tumor growth. According to the researchers, the novel approach may become a useful strategy in cancer drug development. The study appears online the week of February 8, 2010, in the Proceedings of the National Academy of Sciences.

In this "rational design approach," Cheresh and his co-workers used the supercomputer at the San Diego Supercomputer Center to custom-design molecules that stabilized the inactive forms of two similar kinases, PDGFRâ and B-RAF – both of which are found to be activated in tumors and in blood vessels that feed tumors. Since PDGFRâ and B-RAF work cooperatively, keeping both turned off causes synergistic effects in tumors, according to Cheresh.

"We custom design a drug for a target that we know either plays a role in blood vessel angiogenesis or tumor invasion," said Cheresh. "By doing this on the computer screen and effectively locking the target in the off position, we can generate selective drugs that are expected to produce minimal side effects. Working with a series of chemical scaffolds, we are able to design specific interactions to fit certain targets in cancer cells."

They tested candidates for their effects on embryonic zebrafish blood vessels, which behave similarly to human cancer blood vessels. Molecules that blocked blood vessel growth in the fish were found to do the same in mice, and Cheresh hopes they will soon be tested in cancer patients.

The drug screen system has several advantages, Cheresh explained. Most standard screens test 400,000 candidates in test tubes to identify a single drug candidate. His group's screening method requires fewer than 100 compounds to be screened because they are rationally designed, look for specific types of targets, and use a zebrafish model, testing molecules in cells, tissues and organs for "physiological relevance." The zebrafish is a popular drug research model because it is transparent and the effects of drugs are easily monitored.

In addition, he said, the rational design approach provides drugs that are more selective, hitting desired targets and yielding fewer side effects.

Co-authors include: Eric A. Murphy, David J. Shields, Konstatin Stoletov, Michele McElroy, Joshua Greenberg, Jeff Lindquist, Lisette Acevedo, Sudarshan Anand, Bharat Kumar Majeti, Breda Walsh, Michael Bouvet, Richard L. Klemke, Wolfgang Wrasidlo, Moores UCSD Cancer Center; Elena Dneprovskaia, TargeGen, Inc., San Diego; Igor Tsigelny, Adrian Saldanha, UCSD; Robert M. Hoffman, Moores UCSD Cancer Center and Anticancer, Inc., San Diego; Peter K. Vogt, The Scripps Research Institute, La Jolla; Lee Arnold, Kinagen, Inc., Encinitas, CA.

Funding support came from the National Cancer Institute and Kinagen, Inc.

The Moores UCSD Cancer Center is one of the nation's 40 National Cancer Institute-designated Comprehensive Cancer Centers, combining research, clinical care and community outreach to advance the prevention, treatment and cure of cancer.

Steve Benowitz | EurekAlert!
Further information:
http://www.ucsd.edu
http://health.ucsd.edu/cancer

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>