Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from CIC bioGUNE have found a way to treat ischemic pathologies

07.08.2009
A team of researchers from CIC bioGUNE from the Cellular Biology and Stem Cell Unit, alongside a team from Paris' Cardiovascular Research Centre (INSERM U970) have developed a new area of research which looks extremely promising as regards the development of new therapeutic responses to ischemic pathologies and cardiovascular diseases in general.

The results of this research project, which was initiated in 2005 and is supported by Bizkaia:Xede and the Basque Government's Etortek programme, were published in the prestigious scientific journal Circulation.

By activating a protein called HIF, the strategy is to stimulate revascularisation and the repair of the damaged organ following ischemia caused by the obstruction of a blood vessel preventing normal blood flow. These obstructions occur, for example, in the event of thrombosis in a limb, myocardial infarction or a stroke. In this sense, it is important to highlight the fact that cardiovascular diseases are the principal cause of death throughout the world (in the European Union, they account for 40% of all deaths, a figure equivalent to 2 million deaths per year).

In general, cells tend to respond to the lack of oxygen caused by poor blood flow by activating HIF. However, in the case of an ischemic pathology, HIF is not sufficiently activated.

Dr Berra, Cellular Biology and Stem Cell Unit's leader, stated that they decided to over-produce HIF following ischemia as an attractive therapeutic alternative. For their research purposes, they used an ischemic model provoked in a mouse leg through ligation of the femoral artery. In other words, they closed off the femoral artery and stopped the blood flow to the limb. When this happens, the leg develops necrosis and after a time, the mouse dies.

The aim was to artificially help stimulate the production of HIF after the femoral artery had been closed off. And they saw that when they did this, the mouse's leg revascularised and no longer entered into a degenerative process.

How is this high level of HIF production achieved? HIF is a protein which, when not required, degrades constitutively and this degradation is regulated by enzymes called PHDs.

These enzymes hydroxylate HIF and, as a result of this hydroxylation, the protein degrades. Therefore, when these enzymes are inhibited, HIF cannot degrade and so accumulates. To inhibit PHDs, they use siRNAs, explains Dr Berra.

Oihane Lakar | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>