Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from CIC bioGUNE have found a way to treat ischemic pathologies

07.08.2009
A team of researchers from CIC bioGUNE from the Cellular Biology and Stem Cell Unit, alongside a team from Paris' Cardiovascular Research Centre (INSERM U970) have developed a new area of research which looks extremely promising as regards the development of new therapeutic responses to ischemic pathologies and cardiovascular diseases in general.

The results of this research project, which was initiated in 2005 and is supported by Bizkaia:Xede and the Basque Government's Etortek programme, were published in the prestigious scientific journal Circulation.

By activating a protein called HIF, the strategy is to stimulate revascularisation and the repair of the damaged organ following ischemia caused by the obstruction of a blood vessel preventing normal blood flow. These obstructions occur, for example, in the event of thrombosis in a limb, myocardial infarction or a stroke. In this sense, it is important to highlight the fact that cardiovascular diseases are the principal cause of death throughout the world (in the European Union, they account for 40% of all deaths, a figure equivalent to 2 million deaths per year).

In general, cells tend to respond to the lack of oxygen caused by poor blood flow by activating HIF. However, in the case of an ischemic pathology, HIF is not sufficiently activated.

Dr Berra, Cellular Biology and Stem Cell Unit's leader, stated that they decided to over-produce HIF following ischemia as an attractive therapeutic alternative. For their research purposes, they used an ischemic model provoked in a mouse leg through ligation of the femoral artery. In other words, they closed off the femoral artery and stopped the blood flow to the limb. When this happens, the leg develops necrosis and after a time, the mouse dies.

The aim was to artificially help stimulate the production of HIF after the femoral artery had been closed off. And they saw that when they did this, the mouse's leg revascularised and no longer entered into a degenerative process.

How is this high level of HIF production achieved? HIF is a protein which, when not required, degrades constitutively and this degradation is regulated by enzymes called PHDs.

These enzymes hydroxylate HIF and, as a result of this hydroxylation, the protein degrades. Therefore, when these enzymes are inhibited, HIF cannot degrade and so accumulates. To inhibit PHDs, they use siRNAs, explains Dr Berra.

Oihane Lakar | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>