Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from CIC bioGUNE have found a way to treat ischemic pathologies

07.08.2009
A team of researchers from CIC bioGUNE from the Cellular Biology and Stem Cell Unit, alongside a team from Paris' Cardiovascular Research Centre (INSERM U970) have developed a new area of research which looks extremely promising as regards the development of new therapeutic responses to ischemic pathologies and cardiovascular diseases in general.

The results of this research project, which was initiated in 2005 and is supported by Bizkaia:Xede and the Basque Government's Etortek programme, were published in the prestigious scientific journal Circulation.

By activating a protein called HIF, the strategy is to stimulate revascularisation and the repair of the damaged organ following ischemia caused by the obstruction of a blood vessel preventing normal blood flow. These obstructions occur, for example, in the event of thrombosis in a limb, myocardial infarction or a stroke. In this sense, it is important to highlight the fact that cardiovascular diseases are the principal cause of death throughout the world (in the European Union, they account for 40% of all deaths, a figure equivalent to 2 million deaths per year).

In general, cells tend to respond to the lack of oxygen caused by poor blood flow by activating HIF. However, in the case of an ischemic pathology, HIF is not sufficiently activated.

Dr Berra, Cellular Biology and Stem Cell Unit's leader, stated that they decided to over-produce HIF following ischemia as an attractive therapeutic alternative. For their research purposes, they used an ischemic model provoked in a mouse leg through ligation of the femoral artery. In other words, they closed off the femoral artery and stopped the blood flow to the limb. When this happens, the leg develops necrosis and after a time, the mouse dies.

The aim was to artificially help stimulate the production of HIF after the femoral artery had been closed off. And they saw that when they did this, the mouse's leg revascularised and no longer entered into a degenerative process.

How is this high level of HIF production achieved? HIF is a protein which, when not required, degrades constitutively and this degradation is regulated by enzymes called PHDs.

These enzymes hydroxylate HIF and, as a result of this hydroxylation, the protein degrades. Therefore, when these enzymes are inhibited, HIF cannot degrade and so accumulates. To inhibit PHDs, they use siRNAs, explains Dr Berra.

Oihane Lakar | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>