Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Use Chemometric Method to Determine Age of Skeletal Remains

08.10.2008
Baylor University researchers have found a promising new method to determine the date of skeletal remains. The relatively simple technique of applying statistics to chemical measurements could provide a quicker way for crime scene investigators and others to determine the post-mortem interval of bones, or the time that has elapsed since a person has died.

It is believed to be the first time that chemometric modeling of spectral data has been used to determine the time elapse after death of skeletal remains. In laboratory tests using this method, Baylor researchers found an error rate of only four to nine days for bones that were up to 90-days old.

“In perfect conditions in the laboratory, the method looks very encouraging,” said Dr. Kenneth Busch, professor of chemistry and co-director of the Center for Analytical Spectroscopy at Baylor and a lead investigator on the project. “Once a regression model is built from spectral data, you could find out the age of the bones in a matter of minutes, rather than taking hours or days.”

Once skeletization occurs, few techniques exist to determine the post-mortem interval of remains in a timely matter. In regions with high heat and humidity, excarnation can occur relatively quickly. Following death, bones lose water and the proteins begin to decompose to amino acids. Baylor researchers were able to follow these changes spectroscopically and correlate the data with the post-mortem interval by using regression modeling.

The Baylor researchers sampled 28 different pig bones that were up to 90-days old and used diffuse reflectance spectroscopy to try to date the skeletal remains. Busch said diffuse reflectance spectroscopy was used because it is non-destructive and is sensitive to protein and moisture. The bones were subjected to different light beams and the researchers found that the diffuse reflectance decreased as time moved on. The spectral data was then correlated with the known ages of the bones.

The researchers found the diffuse reflectance spectra of bones seemed to show some non-linearity in respect to changes with time. They decided to segment the data and divide it into three sets and make models for each. They found that by using the segmented approach, it would cut the prediction error substantially compared with the original 90-day model.

However this created a problem – which model should be used for an unknown bone sample? They found classifying the bones based on a discriminant analysis model followed by a segmented regression model gave the best results.

The research paper outlining the technique and results was presented at the annual meeting of the Federation of Analytical Chemistry and Spectroscopy Societies.

Chartered in 1845 by the Republic of Texas, Baylor University is the oldest, continually operating university in the state. Baylor’s 735-acre campus in Waco, Texas, is home to more than 14,500 students from all 50 states and 70 countries, who can choose from more than 140 undergraduate and 100 graduate programs through 11 academic units. Baylor, a private Christian university and a nationally ranked liberal arts institution, is classified by the Carnegie Foundation for the Advancement of Teaching as a research university with “high research activity.” This blends with Baylor’s international reputation for educational excellence built upon the faculty’s commitment to teaching, scholarship and interdisciplinary research to produce outstanding graduates.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu/pr

Further reports about: 90-day Chemometric Skeletal Remains diffuse found reflectance spectroscopy

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>