Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers characterize biomechanics of ovarian cells according to phenotype at stages of cancer

06.07.2011
Using ovarian surface epithelial cells from mice, researchers from Virginia Tech have released findings from a study that they believe will help in cancer risk assessment, cancer diagnosis, and treatment efficiency in a technical journal: Nanomedicine
http://www.nanomedjournal.com/article/S1549-9634%2811%2900184-5/abstract

By studying the viscoelastic properties of the ovarian cells of mice, they were able to identify differences between early stages of ovarian cancer and more advanced and aggressive phenotypes.

Their studies showed a mouse's ovarian cells are stiffer and more viscous when they are benign. Increases in cell deformation "directly correlates with the progression from a non-tumor benign cell to a malignant one that can produce tumors and metastases in mice," said Masoud Agah, director of Virginia Tech's Microelectromechanical Systems (MEMS) Laboratory http://www.ece.vt.edu/mems/ and the lead investigator on the study.

Their findings are consistent with a University of California at Los Angeles study that reported lung, breast, and pancreatic metastatic cells are 70 percent softer than benign cells. http://www.nature.com/nnano/journal/v2/n12/full/nnano.2007.388.html

The findings also support Agah group's previous reports on elastic properties of breast cell lines. The digital object identifiers to find the studies on the web are: doi:10.1016/j.biomaterials.2010.05.023 doi:10.1016/j.biomaterials.2010.02.034

Agah worked with Eva Schmelz of Virginia Tech's Department of Human Nutrition, Foods, and Exercise http://www.hnfe.vt.edu/about_us/Bios_faculty/bio_schmelz_eva.html, Chris Roberts of the Virginia-Maryland Regional College of Veterinary Medicine http://www.vetmed.vt.edu/org/dbsp/faculty/roberts.asp, and Alperen N. Ketene, a graduate student in mechanical engineering http://www.me.vt.edu/, on this work supported by the National Science Foundation and Virginia Tech's Institute for Critical Technology and Applied Science. http://www.ictas.vt.edu/

They are among a number of researchers attempting to decipher the association of molecular and mechanical events that lead to cancer and its progression. As they are successful, physicians will be able to make better diagnostic and treatment decisions based not only on an individual's genetic fingerprint but also a biomechanical signature.

However, since cancer has multiple causes, various levels of severity, and a wide range of individual responses to the same treatments, the research on cancer progression has been challenging.

A turning point to the research has come with recent advances in nanotechnology, combined with engineering and medicine. Agah and his colleagues now have the critical ability to study the elastic or stretching ability of cells as well as their ability to stick to other cells. These studies on the biomechanics of the cell, linked to a cell's structure "are crucial for the development of disease-treating drugs and detection methods," Agah said.

Using an atomic force microscope (AFM), a relatively new invention by research standards, they are able to characterize cell structure to nanoscale precision. The microscope analyzes live cultured cells and it is able to detect key biomechanical differences between non-transformed and cancerous cells.

From these studies, cancerous cells appear softer or deform at a higher rate than their healthier, non-transformed counterparts, Agah said. In addition, their fluidity increases.

The Virginia Tech researchers selected to study ovarian cancer because it is one of the most lethal types in women and is normally diagnosed late in older patients when the disease has already progressed and metastasized.

Agah reported that no previous information existed about the biomechanical properties of both malignant and benign human ovarian cells, and how they change over time.

However, the mouse studies conducted by this interdisciplinary group of researchers at Virginia Tech have now shown how a cell, as it undergoes transformation towards malignancy, changes its size, loses its innate design of a tightly organized structure, and instead acquires the capacity to grow independently and form tumors.

"We have characterized the cells according to their phenotype into early-benign, intermediate, and late-aggressive stages of cancer that corresponded with their biomechanical properties," Agah reported.

"The mouse ovarian cancer model represents a valid and novel alternative to studying human cell lines and provides important information on the progressive stages of the ovarian cancer," Schmelz and Roberts commented.

"Cell viscosity is an important characteristic of a material because all materials exhibit some form of time-dependent strain," Agah said. This trait is an "imperative" part of any analysis of biological cells.

Their findings confirm that the cytoskeleton affects the biomechanical properties of cells. Changes in these properties can be related to the motility of cancer cells and potentially their ability to invade other cells.

"When cells undergo changes in their viscoelastic properties, they are increasingly able to deform, squeeze, and migrate through size-limiting pores of tissue or vasculature onto other parts of the body," Agah said.

Lynn Nystrom | EurekAlert!
Further information:
http://www.vt.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>