Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher solves mystery about proteins that package the genome

09.10.2009
College of Medicine discovery may lead to better ways to fight cancer

A Florida State University College of Medicine researcher has solved a century-old mystery about proteins that play a vital role in the transfer of the human genetic code from one cell to another. The discovery could lead to finding new ways to help the body fight a variety of diseases, including cancer.

For more than a hundred years, the best scientific evidence supported a belief that histones -- responsible for packaging DNA inside the nucleus of cells -- are highly stable proteins not rapidly degraded by the body. Yet, researchers have not previously been able to explain why free histones, if they are not degraded as other proteins are, do not accumulate in large amounts within human cells.

Akash Gunjan, an assistant professor in the department of biomedical sciences, has found evidence supporting his hypothesis that there actually are two pools of histones: one used in packaging DNA that is very stable and remains in the cell for more than a year in some cases and the other made in excess by the cells to ensure that enough histones are available for packaging the DNA. Not having enough histones results in cell death. Those excess histones, Gunjan suggests, are rapidly degraded as are other proteins.

The discovery is important because it sheds light on the way the body is able to regulate proteins for various complex tasks. Such knowledge may allow scientists to learn how to manipulate protein regulation to fight cancerous cells and thwart other disease processes. Gunjan and co-authors Rakesh Kumar Singh, Marie-Helene Miquel Kabbaj and Johanna Paik, all from the College of Medicine, published their findings in the journal Nature Cell Biology.

“This has major ramifications for all the different things the DNA does,” Gunjan said. “Because if DNA contains genes and DNA is packaged around histones, then histones are at the most fundamental level regulating whether those genes are turned on or off.”

If scientists are able to determine how genes for cancer and other diseases are turned on or off, it might lead to ways to help the body rid itself of or better control disease.

For decades scientists have been captivated by the way the body selectively uses proteins in essential functions, storing or disposing of them when they are not needed. For example, eating a hamburger requires a certain set of enzyme proteins for digestion. If the enzymes are not deactivated or degraded following digestion, the consequences would be disastrous.

“They’ll start to digest things you do not want them to digest,” Gunjan said. “After finishing your hamburger, if these enzymes started digesting proteins in your intestines, in your stomach wall and so on, that would not be a good thing.”

To manage proteins when they are not needed, the body naturally degrades them through a process known as proteolysis. Histones in most cases, however, must be preserved for long periods of time because they make it possible to fold strands of DNA measuring about 3 feet in length within the microscopic nucleus of a typical human cell. Histones used in that process must be able to avoid degradation to preserve the body’s ability to pass on its genetic code from cell to cell.

Histones, the first proteins to be purified, have been a topic of research by scientists for nearly 125 years. The mystery evolved as scientists discovered that cells have multiple copies of histone genes and make far more histones than what is needed for wrapping DNA, yet were unable to explain the apparent contradiction.

“On the one hand, you cannot find the excess histones,” Gunjan said. “On the other hand, if you propose it gets degraded, then you try to measure its rate of degradation and you find that it hangs around for several months to more than a year.”

Gunjan spent five years seeking answers to the mystery before his discovery of two separate pools of histones.

“Not only did we show for the first time that histones are unstable -- they get rapidly degraded -- we also showed this has important consequences for DNA damage and repair processes that have a major impact on cancer formation,” Gunjan said.

Additionally, previous studies published by other researchers suggest that the newly discovered regulated histone proteolysis may make significant contributions to many diverse biological processes, from the resetting of epigenetic marks on histones that help regulate gene expression, to sperm formation.

“All of this together suggests this is a very important phenomenon,” Gunjan said.

Doug Carlson | EurekAlert!
Further information:
http://www.fsu.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>