Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Uses Nanoparticles to Make DNA Analysis 1,000 Times Faster

04.10.2011
A University of Arkansas researcher has patented a process that reduces the time it takes to perform DNA analysis from hours to minutes.

This development could contribute to many areas of health care and law enforcement, including diagnosing and treating disease, developing and testing new vaccines and forensic identification.

Donald K. Roper, associate professor of chemical engineering, explained that the ultimate goal of his research is to develop a credit-card-sized device to be used in a doctor’s office or at a crime scene to quickly analyze samples of DNA. “That’s the power of being able to do this on a really tiny scale,” he said.

To analyze DNA, scientists must often make a tiny sample large enough to work with. To do this, they use a process called polymerase chain reaction, or PCR. Roper, who holds the Charles W. Oxford Endowed Professorship in Emerging Technologies, has invented a way to perform this reaction thousands of times faster than traditional methods.

Roper’s process, which he developed while working at the University of Utah, uses gold nanoparticles to increase the efficiency of the chain reaction. During the reaction, strands of DNA are heated and cooled in cycles. When the samples are heated, the two strands of a DNA double helix come apart, and when the temperature is lowered, an enzyme called polymerase zips each strand to other, complementary strands, forming two new DNA helixes.

These copies are then heated and cooled again, doubling each time until the desired amount of DNA has been produced.

Roper’s method reduces the time involved in these cycles from minutes to milliseconds, which means that a DNA sample could be analyzed within minutes rather than hours. By associating the DNA and enzyme with a gold nanoparticle and then exciting the nanoparticle with a light source or laser beam, Roper can target temperature changes to the area immediately around the DNA. This allows researchers to raise or lower the temperature more quickly. In addition, the process can be used to analyze the DNA during the reaction.

“We can use the laser light and the gold nanoparticles to do both the amplification and the analysis simultaneously,” explained Roper. “The electromagnetic field around the nanoparticle is strong enough that it can sense whether or not the strand that we’re interested in is there. The laser induces the field and then a detector assays the difference in the field.”

Roper’s research has implications for many scientific fields. “Genomics underscores everything of interest to biology: gene sequencing, disease diagnostics, pharmaceutical development and genetic analysis,” he explained. “DNA is the basis of inheritance for the cell, and the degree of transcription of the DNA determines how a cell will function. This is a tool that examines these processes.”

CONTACTS:
Donald Roper, associate professor, chemical engineering
College of Engineering
479-575-6691, dkroper@uark.edu
Camilla Medders, director of communications
College of Engineering
479-575-5697, camillam@uark.edu

Camilla Medders | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>