Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher discovers key to vital DNA, protein interaction

11.11.2009
A researcher at Iowa State University has discovered how a group of proteins from plant pathogenic bacteria interact with DNA in the plant cell, opening up the possibility for what the scientist calls a "cascade of advances."

Adam Bogdanove, associate professor in plant pathology, was researching the molecular basis of bacterial diseases of rice when he and Matthew Moscou, a student in the bioinformatics and computation biology graduate program, discovered that the so-called TAL effector proteins injected into plant cells by strains of the bacterium Xanthomonas attach at specific locations to host DNA molecules.

They found that different proteins of this class bind to different DNA locations, and particular amino acids in each protein determine those locations, called binding sites, in a very straightforward way.

"When we hit on it, we thought, 'Wow, this is so simple, it's ridiculous,'" Bogdanove said. Bogdanove's research will be published in an upcoming issue of the journal Science and is highlighted in last week's Science Express, an early online edition for research the Science editors feel is particularly timely and important. The paper is being published alongside a study from another research team that arrived at the same conclusions independently.

In his research, Bogdanove was examining how Xanthomonas uses TAL effectors to manipulate gene function in plants in ways that benefit the pathogen. Bogdanove was specifically interested in how different TAL effector proteins are able to activate different corresponding plant genes.

Over the past decade, understanding of this unique class of proteins has grown in leaps and bounds, according to Bogdanove.

Researchers in Germany, at Kansas State University, Manhattan; and here at Iowa State (Bing Yang, assistant professor in genetics development and cell biology) had previously shown that these proteins bind host DNA and activate genes important for disease, or in some cases defense against the bacteria. But no one yet understood how different TAL effectors recognized different parts of the DNA in order to attach and turn on the different genes at those locations.

Through computer analyses, Bogdanove and Moscou discovered that pairs of amino acids distributed throughout a TAL effector protein each specify a particular nucleotide, one of the bases in DNA abbreviated as the letters G, A, T, or C. The complete set of these pairs directs the protein to a matching string of Gs, As, Ts, and Cs in the DNA.

"This simple relationship allows us to predict where a TAL effector will bind, and what genes it will activate. It also makes it likely that we can custom engineer TAL effectors to bind to virtually any DNA sequence," says Bogdanove.

According to Bogdanove, being able to predict TAL effector binding sites will lead quickly to the identification of plant genes that are important in disease. Natural variants that lack these binding sites are a potential source of disease resistance.

Another potential application is adding TAL effector binding sites to defense-related genes so they are activated upon infection.

The possibilities for this new technology extend beyond plant disease control, according to Bogdanove.

"We might be able to use TAL effectors to activate genes in non-plant cells, possibly even in human stem cells for gene therapy. Or we might be able to use them to modify DNA at specific locations and help us study gene function. This could apply in many areas, including cancer research, for example," he said.

Bogdanove said the simplicity of the results surprised the research team.

"A predictable and potentially customizable kind of protein-DNA binding has been hard to find in nature. As Matt and I talked about the possibilities, we got excited and one of us said – I don't remember who – 'We've got to submit this to Science, dude,'" said Bogdanove.

Moscou investigated TAL effector DNA binding with Bogdanove through his participation in the Bioinformatics and Computation Biology (BCB) Lab, a student-run organization that provides assistance with computational analyses for life science researchers on campus. Moscou is a founding member of the BCB Lab, which is supported by a training grant to the BCB graduate program from the National Science Foundation. Moscou is doing his dissertation research on a plant pathogenic fungus under Roger Wise, professor in plant pathology.

Research in the Bogdanove laboratory is supported by funding from the NSF Plant Genome Research Program and from the United Stated Department of Agriculture – Agricultural and Food Research Initiative program.

Adam Bogdanove | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>