Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team rehabs contaminated sites using bioremediation

10.06.2009
The Bioremediation Research Team of the National Institute of Molecular Biology and Biotechnology based in UP Los Baños is currently conducting studies to rehabilitate several contaminated sites in the country. These include an abandoned mining site at Mogpog, Marinduque, and bodies of water in Bulacan.

In Mogpog, Marinduque, a team of experts from UPLB headed by College of Arts and Sciences Dean and micro-biologist Dr. Asuncion K. Raymundo has been examining both the soil and bodies of water in the vicinity of an abandoned mining site and has found them heavily contaminated.

Funded by Philippine Council for Agriculture and Forestry Research and Development (PCARRD) of the Department of Science and Technology (DOST), the team was able to plant narra, banaba, and alibangbang in the wasteland with some intervention such as the use of compost, lime, and fungi (Mykovam) despite the presence of heavy metal contamination.

Raymundo said that the possible absorption of copper and the other metal deposits by smaller and easily-grown plants will make it possible for these metals to be recovered and recycled into useful materials.

In the meantime, Drs. Nelson Pampolina, Nelly Aganggan, and Jocelyn Zarate are studying the growth of jatropha, also in the Mogpog site, as a means to rehabilitate the soil. Another Dr. Nina Cadiz is studying the possible effects of the absorption of copper, lead, cadmium, and the other metal contaminants both on the plants and on the fruits and seeds that they will bear.

Raymundo and her student, Arlene Llamado, are also looking into the growth of bacteria in the roots of the plants in the Mogpog site and have correlated the growth of the bacteria population with the growth of the plants used for remediation. A thriving population would mean that the bacteria are capable of consuming the metals found in the soil where the plant is situated. The bacteria can then be isolated and used for future microbial remediation in other mining wastes or polluted environments.

Bioremediation is the process of facilitating the detoxification or removal of contaminants, pollutants or waste from an environment through the use of micro-organisms (microbial remediation) and plants (phytoremediation). Bioremediation is important in the restoration of fertility of soils, and the rehabilitation of rivers and other bodies of water contaminated by pollutants.

Aside from its use in mining sites, bioremediation is also being considered to rehabilitate areas contaminated by gold smelters and tanneries, such as those located in Marilao, Meycauayan, and the Obando river systems in Bulacan. Prof. Marlo Mendoza, Dr. Lorele Trinidad, Dr. Veronica Migo, and Dr. Catalino Alfafara, in cooperation with CHeLSi Tannery of Bulacan, are looking at microbial remediation to reduce the concentration of toxic heavy metals in the industry’s wastewater. Chemical run-offs from tanneries and gold smelters along the rivers have been found to pose a serious threat to the health of communities living along these bodies of water and to those who consume the aquatic resources from these rivers, prompting the team to initiate research on microbial remediation in the tannery and gold smelter industries. Any significant result of the research can be implemented by the industries in the area.

Bioremediation is considered safer than other environmental remediation methods which make use of chemical agents. Unlike the latter, it does necessitate the transfer of local populations or organisms and, at times, let alone restructuring of a community or environment. It uses naturally-occurring biological organisms or agents which pose no danger to the existing population and eco-systems.

The UPLB studies and experiments on bioremediation have been conducted with the cooperation of experts from other academic institutions and agencies also conducting similar research. Among these institutions are the Mindanao State University-Iligan Institute of Technology; the Ateneo de Manila University; and UP Diliman. These universities share their expertise and findings with each other in the hope of finding solutions to various situations where bioremediation can be applied.

Dr. Raymundo has been named Academician by the National Academy of Science and Technology since 2002. A proposal which would enable the researchers to conduct more studies in the area at the cost of P20 million has also been submitted by the team to the DOST. (Khalil Ismael Michael Quilinguing)

Florante A. Cruz | Research asia research news
Further information:
http://rdenews.uplb.edu.ph
http://www.researchsea.com

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>