Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research team rehabs contaminated sites using bioremediation

The Bioremediation Research Team of the National Institute of Molecular Biology and Biotechnology based in UP Los Baños is currently conducting studies to rehabilitate several contaminated sites in the country. These include an abandoned mining site at Mogpog, Marinduque, and bodies of water in Bulacan.

In Mogpog, Marinduque, a team of experts from UPLB headed by College of Arts and Sciences Dean and micro-biologist Dr. Asuncion K. Raymundo has been examining both the soil and bodies of water in the vicinity of an abandoned mining site and has found them heavily contaminated.

Funded by Philippine Council for Agriculture and Forestry Research and Development (PCARRD) of the Department of Science and Technology (DOST), the team was able to plant narra, banaba, and alibangbang in the wasteland with some intervention such as the use of compost, lime, and fungi (Mykovam) despite the presence of heavy metal contamination.

Raymundo said that the possible absorption of copper and the other metal deposits by smaller and easily-grown plants will make it possible for these metals to be recovered and recycled into useful materials.

In the meantime, Drs. Nelson Pampolina, Nelly Aganggan, and Jocelyn Zarate are studying the growth of jatropha, also in the Mogpog site, as a means to rehabilitate the soil. Another Dr. Nina Cadiz is studying the possible effects of the absorption of copper, lead, cadmium, and the other metal contaminants both on the plants and on the fruits and seeds that they will bear.

Raymundo and her student, Arlene Llamado, are also looking into the growth of bacteria in the roots of the plants in the Mogpog site and have correlated the growth of the bacteria population with the growth of the plants used for remediation. A thriving population would mean that the bacteria are capable of consuming the metals found in the soil where the plant is situated. The bacteria can then be isolated and used for future microbial remediation in other mining wastes or polluted environments.

Bioremediation is the process of facilitating the detoxification or removal of contaminants, pollutants or waste from an environment through the use of micro-organisms (microbial remediation) and plants (phytoremediation). Bioremediation is important in the restoration of fertility of soils, and the rehabilitation of rivers and other bodies of water contaminated by pollutants.

Aside from its use in mining sites, bioremediation is also being considered to rehabilitate areas contaminated by gold smelters and tanneries, such as those located in Marilao, Meycauayan, and the Obando river systems in Bulacan. Prof. Marlo Mendoza, Dr. Lorele Trinidad, Dr. Veronica Migo, and Dr. Catalino Alfafara, in cooperation with CHeLSi Tannery of Bulacan, are looking at microbial remediation to reduce the concentration of toxic heavy metals in the industry’s wastewater. Chemical run-offs from tanneries and gold smelters along the rivers have been found to pose a serious threat to the health of communities living along these bodies of water and to those who consume the aquatic resources from these rivers, prompting the team to initiate research on microbial remediation in the tannery and gold smelter industries. Any significant result of the research can be implemented by the industries in the area.

Bioremediation is considered safer than other environmental remediation methods which make use of chemical agents. Unlike the latter, it does necessitate the transfer of local populations or organisms and, at times, let alone restructuring of a community or environment. It uses naturally-occurring biological organisms or agents which pose no danger to the existing population and eco-systems.

The UPLB studies and experiments on bioremediation have been conducted with the cooperation of experts from other academic institutions and agencies also conducting similar research. Among these institutions are the Mindanao State University-Iligan Institute of Technology; the Ateneo de Manila University; and UP Diliman. These universities share their expertise and findings with each other in the hope of finding solutions to various situations where bioremediation can be applied.

Dr. Raymundo has been named Academician by the National Academy of Science and Technology since 2002. A proposal which would enable the researchers to conduct more studies in the area at the cost of P20 million has also been submitted by the team to the DOST. (Khalil Ismael Michael Quilinguing)

Florante A. Cruz | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>