Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Clarifies the Mechanics Behind the First New Cell Cycle to be Described in More than Two Decades

31.10.2011
An international team of researchers led by investigators in the U.S. and Germany has shed light on the inner workings of the endocycle, a common cell cycle that fuels growth in plants, animals and some human tissues and is responsible for generating up to half of the Earth’s biomass.

This discovery, led by a geneticist at Fred Hutchinson Cancer Research Center and reported Oct. 30 in Nature, leads to a new understanding of how cells grow and how rates of cell growth might be increased or decreased, which has important implications in both agriculture and medicine.

“It can be argued that this is the first completely novel cell cycle to be elucidated in more than a two decades,” said Bruce Edgar, Ph.D., corresponding author of the paper and a member of the Basic Sciences Division at the Hutchinson Center, referring to the groundbreaking description of the mitotic cell cycle in the same journal in the late 1980s.

Mitosis is the division of a mother cell into two daughter cells that contain identical sets of chromosomes.

Endocycling, in contrast, is a special type of cell cycle that skips mitosis. The cell replicates its DNA over and over again without ever dividing into two cells. Endocycles play a crucial role in nature because they generate very large cells in invertebrate animals and plants, as well as some human tissues, such as liver and muscle. Most cells in plants and invertebrate animals such as insects, crustaceans (such as shrimp), mollusks (such as clams, oysters and snails) grow by endocycling.

“When a cell goes through an endocycle, it doubles its DNA, and typically also doubles its size and protein content,” said Edgar, also a professor at the Center for Molecular Biology and the German Cancer Research Center in Heidelberg, Germany. “Because of this, one could imagine that promoting just one extra endocycle in the cells of a crop plant or farmed shellfish might double the agricultural yield from that crop,” he said. “Similarly, suppressing endocycling in an insect pest would be expected to dramatically slow the growth and reproduction of that pest.”

For the research, Edgar and colleagues used genetic approaches to study a model organism – the fruit fly – which has many endocycling cells. The researchers primarily studied the saliva glands, as the cells in these glands endoreplicate about 10 times during the fly’s life cycle, which increases the amount of DNA – and the corresponding size of each cell – more than 1,000-fold.

The researchers studied genetic transcription factors and enzymes that drive endocycling and DNA replication through a series of choreographed pulses. Specifically, they found that a transcription factor called E2F is temporarily destroyed during DNA replication by an enzyme called CRL4. Function of E2F is then restored after DNA replication and the cycle repeats itself.

“Together, E2F and CRL4 function a molecular oscillator,” Edgar said. “An analogy might be a water wheel, which is driven by the filling and emptying of its buckets. E2F would be analogous to the water, which first accumulates in a bucket, and then DNA replication would be analogous to the rotation of the wheel. CRL4 destroys the accumulated E2F, which is analogous to the bucket emptying so the process can repeat,” Edgar said.

Edgar and colleagues also found that the rate of cell growth controls the rate of E2F accumulation and thereby controls how rapidly cells can replicate and re-replicate their DNA. “In the water wheel analogy, the more water that flows into the wheel the faster it rotates. Similarly, in the endocycle, the faster E2F is produced, the faster the endocycle spins and the bigger the cell gets. We think this property probably applies to all growing cells,” he said.

Although humans don’t have many cells that endocycle, several important examples that do include trophoblast giant cells in the placenta, which support fetal development. “If they don’t endocycle, no baby,” Edgar said. Heart muscle cells also grow by endocycling, as do certain types of blood cells. Some diseases that arise from a malfunction of these cells could involve defects in endocycling, and such diseases might be treated by drugs that target the proteins that comprise the endocycle oscillator.

“Generally, the gene products and principles used by the endocycle oscillator are employed to control DNA replication in virtually all cells,” Edgar said. “Because of this, our findings are potentially relevant to many diseases that involve abnormal cell proliferation. These include all cancers and some degenerative diseases.”

In addition to researchers at the Hutchinson Center and the German Cancer Research Center, collaborators included researchers from the University of Heidelberg, University of Washington, University of North Carolina at Chapel Hill, University of Zurich and University of Calgary.

Funding for the research came from the National Institutes of Health, the National Institute for General Medical Sciences, the National Science Foundation, the German Academic Exchange Service, the German Cancer Research Center and the Canadian Institutes of Health Research.

Note for media only: To obtain a copy of the embargoed Nature paper, “Control of Drosophilia endocycles by E2F and CRL4,” (digital object identifier No. 10.1038/nature10579) please visit http://press.nature.com or email press@nature.com

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.

Kristen Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>