Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research suggests a blood test to locate gene defects associated with cancer may not be far off

Some surprising research findings from scientists at The University of Texas MD Anderson Cancer Center suggest it's possible a simple blood test could be developed to determine whether gene mutations associated with pancreatic cancer exist without the need of locating and testing tumor tissue.

This appears possible following the discovery that tiny particles the size of viruses called 'exosomes,' which are shed by cancer cells into the blood, contain the entire genetic blueprint of cancer cells. By decoding this genomic data and looking for deletions and mutations associated with cancer, the research team believes this discovery could be translated into a test that helps physicians detect cancer and treat patients.

The findings are based on research led by Raghu Kalluri, M.D., Ph.D., chairman and professor in MD Anderson's Department of Cancer Biology. The research results appear in the current online edition of the Journal of Biological Chemistry.

"At the present time, there is no single blood test that can screen for all cancer related DNA defects," said Kalluri. "In many cases, current protocols require a tumor sample to determine whether gene mutations and deletions exist and therefore determine whether the tumor itself is cancerous or benign. To procure tumor tissue, one needs to know that a tumor exists and if so, is it accessible for sample collection or removal? Finally, there are always risks and significant costs associated with surgical procedures to acquire tumor tissue."

Historically, researchers were aware these miniscule particles existed and that they carried nucleic acids and proteins. It was also believed that exosomes carried small portions of the person's DNA. However, upon further investigation, the MD Anderson research team was surprised to learn that the person's entire double-stranded genomic DNA spanning all chromosomes can be found in exosomes, including those mutated chromosomes that cause various cancers. Furthermore, Kalluri and colleagues discovered that DNA derived from exosomes carried the same cancer-related genetic mutations compared to the cancer cells taken from tumor.

"Because different forms of cancer are associated with different chromosomal mutations , we believe analysis of exosome DNA taken from blood samples may not only help determine the presence of a cancerous tumor somewhere in the body but also identify mutations without a need for tumor sample," added Kalluri. "We also believe this "fingerprint" will help lead us to the likely site of the tumor in the body. For instance, certain mutation spectrums would suggest pancreatic cancer or a brain-based tumor. While there is much more work to be conducted to develop such a test, having a tool such as this would increase our abilities to detect cancer in an earlier stage and therefore increase our chances of effective treatment."

"This seminal discovery paves the way for highly sensitive screening for driver mutations of cancer in the blood without the need for biopsy of tumor tissue and importantly, lays the foundation for a new method for the early detection of cancer when the chance for cure is greatest," said MD Anderson President Ronald A. DePinho, M.D.

The National Institutes of Health, Cancer Prevention and Research Institute of Texas and MD Anderson all provided funding to support this research.

Jim Newman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>