Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research suggests a blood test to locate gene defects associated with cancer may not be far off

09.01.2014
Some surprising research findings from scientists at The University of Texas MD Anderson Cancer Center suggest it's possible a simple blood test could be developed to determine whether gene mutations associated with pancreatic cancer exist without the need of locating and testing tumor tissue.

This appears possible following the discovery that tiny particles the size of viruses called 'exosomes,' which are shed by cancer cells into the blood, contain the entire genetic blueprint of cancer cells. By decoding this genomic data and looking for deletions and mutations associated with cancer, the research team believes this discovery could be translated into a test that helps physicians detect cancer and treat patients.

The findings are based on research led by Raghu Kalluri, M.D., Ph.D., chairman and professor in MD Anderson's Department of Cancer Biology. The research results appear in the current online edition of the Journal of Biological Chemistry.

"At the present time, there is no single blood test that can screen for all cancer related DNA defects," said Kalluri. "In many cases, current protocols require a tumor sample to determine whether gene mutations and deletions exist and therefore determine whether the tumor itself is cancerous or benign. To procure tumor tissue, one needs to know that a tumor exists and if so, is it accessible for sample collection or removal? Finally, there are always risks and significant costs associated with surgical procedures to acquire tumor tissue."

Historically, researchers were aware these miniscule particles existed and that they carried nucleic acids and proteins. It was also believed that exosomes carried small portions of the person's DNA. However, upon further investigation, the MD Anderson research team was surprised to learn that the person's entire double-stranded genomic DNA spanning all chromosomes can be found in exosomes, including those mutated chromosomes that cause various cancers. Furthermore, Kalluri and colleagues discovered that DNA derived from exosomes carried the same cancer-related genetic mutations compared to the cancer cells taken from tumor.

"Because different forms of cancer are associated with different chromosomal mutations , we believe analysis of exosome DNA taken from blood samples may not only help determine the presence of a cancerous tumor somewhere in the body but also identify mutations without a need for tumor sample," added Kalluri. "We also believe this "fingerprint" will help lead us to the likely site of the tumor in the body. For instance, certain mutation spectrums would suggest pancreatic cancer or a brain-based tumor. While there is much more work to be conducted to develop such a test, having a tool such as this would increase our abilities to detect cancer in an earlier stage and therefore increase our chances of effective treatment."

"This seminal discovery paves the way for highly sensitive screening for driver mutations of cancer in the blood without the need for biopsy of tumor tissue and importantly, lays the foundation for a new method for the early detection of cancer when the chance for cure is greatest," said MD Anderson President Ronald A. DePinho, M.D.

The National Institutes of Health, Cancer Prevention and Research Institute of Texas and MD Anderson all provided funding to support this research.

Jim Newman | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>