Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Shows Dinosaurs May Have Been Smaller Than We Thought

29.06.2009
For millions of years, dinosaurs have been considered the largest creatures ever to walk on land. While they still maintain this status, a new study suggests that some dinosaurs may actually have weighed as little as half as much as previously thought.

In the study, published this week in the Journal of Zoology, Geoffrey Birchard, associate professor of environmental science and policy at George Mason University, was part of a team which uncovered a problem with the statistical model used by some scientists in the dinosaur community to estimate the mass of dinosaurs.

"The original equation used by scientists produces fairly accurate results when determining the mass of smaller animals, but when used on larger animals our research shows that many errors have occurred," says Birchard. "The new equation shows that dinosaurs are much smaller than we thought, but there is no mistaking that they were indeed huge animals."

Developed in 1985, the results of the original equation have been used by scientists to estimate or evaluate a variety of parameters, including brain size and egg size. The problem occurs as a result of transforming the data, which changes the properties of the original data, and creates biases that can affect the predictive results obtained from the equation.

... more about:
»ElePhant »Zoology »dinosaurs »hippopotamus »smaller

Birchard and his colleagues realized there was an error when they used the equation to determine the weight of living animals such as a hippopotamus and an elephant and discovered that the equation greatly overestimated the weight of these animals.

The researchers developed a new equation for calculating dinosaur mass based on bone dimensions. This equation doesn't require the transformation of data that the original equation uses.

"The best way to understand the new equation is to think about a building that is built on pillars,"says Birchard. "The bigger the building, the larger the pillars must be to support the weight of the building. In the same way, the legs of an animal are the pillars supporting its body."

According to Birchard, this new research suggests that some dinosaurs were much more slender than had been thought. It also changes many of the factors scientists have already determined about dinosaurs such as the amount of muscle required to use their bodies and how much they ate and breathed.

Editor's note: For a copy of the paper titled "Allometric equations for predicting body mass of dinosaurs" published in the Journal of Zoology, contact Catherine Ferraro at 703-993-8813 or cferraro@gmu.edu.

About George Mason University
Named the #1 national university to watch by U.S. News & World Report, George Mason University is an innovative, entrepreneurial institution with global distinction in a range of academic fields. Located in the heart of Northern Virginia’s technology corridor near Washington, D.C., Mason prepares its students to succeed in the work force and meet the needs of the region and the world. With strong undergraduate and graduate degree programs in engineering and information technology, dance, organizational psychology and health care, Mason students are routinely recognized with national and international scholarships. Mason professors conduct groundbreaking research in areas such as cancer, climate change, information technology and the biosciences, and Mason’s Center for the Arts brings world-renowned artists, musicians and actors to its stage.

Catherine Ferraro | EurekAlert!
Further information:
http://www.gmu.edu

Further reports about: ElePhant Zoology dinosaurs hippopotamus smaller

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>